# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_client import Client import cv2 import sys import numpy as np import os import time import re import base64 from tools.infer.predict_det import TextDetector from params import read_params global_args = read_params() if global_args.use_gpu: from paddle_serving_server_gpu.web_service import WebService else: from paddle_serving_server.web_service import WebService class TextDetectorHelper(TextDetector): def __init__(self, args): super(TextDetectorHelper, self).__init__(args) if self.det_algorithm == "SAST": self.fetch = [ "bn_f_border4.output.tmp_2", "bn_f_tco4.output.tmp_2", "bn_f_tvo4.output.tmp_2", "sigmoid_0.tmp_0" ] elif self.det_algorithm == "EAST": self.fetch = ["sigmoid_0.tmp_0", "tmp_2"] elif self.det_algorithm == "DB": self.fetch = ["save_infer_model/scale_0.tmp_0"] def preprocess(self, img): im, ratio_list = self.preprocess_op(img) if im is None: return None, 0 return { "image": im[0] }, self.fetch, { "ratio_list": [ratio_list], "ori_im": img } def postprocess(self, outputs, args): outs_dict = {} if self.det_algorithm == "EAST": outs_dict['f_geo'] = outputs[0] outs_dict['f_score'] = outputs[1] elif self.det_algorithm == 'SAST': outs_dict['f_border'] = outputs[0] outs_dict['f_score'] = outputs[1] outs_dict['f_tco'] = outputs[2] outs_dict['f_tvo'] = outputs[3] else: outs_dict['maps'] = outputs[0] dt_boxes_list = self.postprocess_op(outs_dict, args["ratio_list"]) dt_boxes = dt_boxes_list[0] if self.det_algorithm == "SAST" and self.det_sast_polygon: dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, args["ori_im"].shape) else: dt_boxes = self.filter_tag_det_res(dt_boxes, args["ori_im"].shape) return dt_boxes class DetService(WebService): def init_det(self): self.text_detector = TextDetectorHelper(global_args) def preprocess(self, feed=[], fetch=[]): data = base64.b64decode(feed[0]["image"].encode('utf8')) data = np.fromstring(data, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) feed, fetch, self.tmp_args = self.text_detector.preprocess(im) return feed, fetch def postprocess(self, feed={}, fetch=[], fetch_map=None): outputs = [fetch_map[x] for x in fetch] det_res = self.text_detector.postprocess(outputs, self.tmp_args) res = [] for i in range(len(det_res)): res.append({"text_region": det_res[i].tolist()}) return res if __name__ == "__main__": ocr_service = DetService(name="ocr") ocr_service.load_model_config(global_args.det_server_dir) ocr_service.init_det() if global_args.use_gpu: ocr_service.prepare_server( workdir="workdir", port=9292, device="gpu", gpuid=0) else: ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu") ocr_service.run_rpc_service() ocr_service.run_web_service()