未验证 提交 f8889760 编写于 作者: M MissPenguin 提交者: GitHub

Merge pull request #2426 from WenmuZhou/android_demo

add Android demo
......@@ -24,4 +24,8 @@ output/
build/
dist/
paddleocr.egg-info/
\ No newline at end of file
paddleocr.egg-info/
/deploy/android_demo/app/OpenCV/
/deploy/android_demo/app/PaddleLite/
/deploy/android_demo/app/.cxx/
/deploy/android_demo/app/cache/
*.iml
.gradle
/local.properties
/.idea/*
.DS_Store
/build
/captures
.externalNativeBuild
# 如何快速测试
### 1. 安装最新版本的Android Studio
可以从 https://developer.android.com/studio 下载。本Demo使用是4.0版本Android Studio编写。
### 2. 按照NDK 20 以上版本
Demo测试的时候使用的是NDK 20b版本,20版本以上均可以支持编译成功。
如果您是初学者,可以用以下方式安装和测试NDK编译环境。
点击 File -> New ->New Project, 新建 "Native C++" project
### 3. 导入项目
点击 File->New->Import Project..., 然后跟着Android Studio的引导导入
# 获得更多支持
前往[端计算模型生成平台EasyEdge](https://ai.baidu.com/easyedge/app/open_source_demo?referrerUrl=paddlelite),获得更多开发支持:
- Demo APP:可使用手机扫码安装,方便手机端快速体验文字识别
- SDK:模型被封装为适配不同芯片硬件和操作系统SDK,包括完善的接口,方便进行二次开发
import java.security.MessageDigest
apply plugin: 'com.android.application'
android {
compileSdkVersion 29
defaultConfig {
applicationId "com.baidu.paddle.lite.demo.ocr"
minSdkVersion 23
targetSdkVersion 29
versionCode 1
versionName "1.0"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
externalNativeBuild {
cmake {
cppFlags "-std=c++11 -frtti -fexceptions -Wno-format"
arguments '-DANDROID_PLATFORM=android-23', '-DANDROID_STL=c++_shared' ,"-DANDROID_ARM_NEON=TRUE"
}
}
ndk {
// abiFilters "arm64-v8a", "armeabi-v7a"
abiFilters "arm64-v8a", "armeabi-v7a"
ldLibs "jnigraphics"
}
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
}
}
externalNativeBuild {
cmake {
path "src/main/cpp/CMakeLists.txt"
version "3.10.2"
}
}
}
dependencies {
implementation fileTree(include: ['*.jar'], dir: 'libs')
implementation 'androidx.appcompat:appcompat:1.1.0'
implementation 'androidx.constraintlayout:constraintlayout:1.1.3'
testImplementation 'junit:junit:4.12'
androidTestImplementation 'com.android.support.test:runner:1.0.2'
androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.2'
}
def archives = [
[
'src' : 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/paddle_lite_libs_v2_9_0.tar.gz',
'dest': 'PaddleLite'
],
[
'src' : 'https://paddlelite-demo.bj.bcebos.com/libs/android/opencv-4.2.0-android-sdk.tar.gz',
'dest': 'OpenCV'
],
[
'src' : 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ocr_v2_for_cpu.tar.gz',
'dest' : 'src/main/assets/models'
],
[
'src' : 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_dict.tar.gz',
'dest' : 'src/main/assets/labels'
]
]
task downloadAndExtractArchives(type: DefaultTask) {
doFirst {
println "Downloading and extracting archives including libs and models"
}
doLast {
// Prepare cache folder for archives
String cachePath = "cache"
if (!file("${cachePath}").exists()) {
mkdir "${cachePath}"
}
archives.eachWithIndex { archive, index ->
MessageDigest messageDigest = MessageDigest.getInstance('MD5')
messageDigest.update(archive.src.bytes)
String cacheName = new BigInteger(1, messageDigest.digest()).toString(32)
// Download the target archive if not exists
boolean copyFiles = !file("${archive.dest}").exists()
if (!file("${cachePath}/${cacheName}.tar.gz").exists()) {
ant.get(src: archive.src, dest: file("${cachePath}/${cacheName}.tar.gz"))
copyFiles = true; // force to copy files from the latest archive files
}
// Extract the target archive if its dest path does not exists
if (copyFiles) {
copy {
from tarTree("${cachePath}/${cacheName}.tar.gz")
into "${archive.dest}"
}
}
}
}
}
preBuild.dependsOn downloadAndExtractArchives
\ No newline at end of file
# Add project specific ProGuard rules here.
# You can control the set of applied configuration files using the
# proguardFiles setting in build.gradle.
#
# For more details, see
# http://developer.android.com/guide/developing/tools/proguard.html
# If your project uses WebView with JS, uncomment the following
# and specify the fully qualified class name to the JavaScript interface
# class:
#-keepclassmembers class fqcn.of.javascript.interface.for.webview {
# public *;
#}
# Uncomment this to preserve the line number information for
# debugging stack traces.
#-keepattributes SourceFile,LineNumberTable
# If you keep the line number information, uncomment this to
# hide the original source file name.
#-renamesourcefileattribute SourceFile
package com.baidu.paddle.lite.demo.ocr;
import android.content.Context;
import android.support.test.InstrumentationRegistry;
import android.support.test.runner.AndroidJUnit4;
import org.junit.Test;
import org.junit.runner.RunWith;
import static org.junit.Assert.*;
/**
* Instrumented test, which will execute on an Android device.
*
* @see <a href="http://d.android.com/tools/testing">Testing documentation</a>
*/
@RunWith(AndroidJUnit4.class)
public class ExampleInstrumentedTest {
@Test
public void useAppContext() {
// Context of the app under test.
Context appContext = InstrumentationRegistry.getTargetContext();
assertEquals("com.baidu.paddle.lite.demo", appContext.getPackageName());
}
}
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.baidu.paddle.lite.demo.ocr">
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.CAMERA"/>
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<!-- to test MiniActivity, change this to com.baidu.paddle.lite.demo.ocr.MiniActivity -->
<activity android:name="com.baidu.paddle.lite.demo.ocr.MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
<activity
android:name="com.baidu.paddle.lite.demo.ocr.SettingsActivity"
android:label="Settings">
</activity>
<provider
android:name="androidx.core.content.FileProvider"
android:authorities="com.baidu.paddle.lite.demo.ocr.fileprovider"
android:exported="false"
android:grantUriPermissions="true">
<meta-data
android:name="android.support.FILE_PROVIDER_PATHS"
android:resource="@xml/file_paths"></meta-data>
</provider>
</application>
</manifest>
\ No newline at end of file
# For more information about using CMake with Android Studio, read the
# documentation: https://d.android.com/studio/projects/add-native-code.html
# Sets the minimum version of CMake required to build the native library.
cmake_minimum_required(VERSION 3.4.1)
# Creates and names a library, sets it as either STATIC or SHARED, and provides
# the relative paths to its source code. You can define multiple libraries, and
# CMake builds them for you. Gradle automatically packages shared libraries with
# your APK.
set(PaddleLite_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../../../PaddleLite")
include_directories(${PaddleLite_DIR}/cxx/include)
set(OpenCV_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../../../OpenCV/sdk/native/jni")
message(STATUS "opencv dir: ${OpenCV_DIR}")
find_package(OpenCV REQUIRED)
message(STATUS "OpenCV libraries: ${OpenCV_LIBS}")
include_directories(${OpenCV_INCLUDE_DIRS})
aux_source_directory(. SOURCES)
set(CMAKE_CXX_FLAGS
"${CMAKE_CXX_FLAGS} -ffast-math -Ofast -Os"
)
set(CMAKE_CXX_FLAGS
"${CMAKE_CXX_FLAGS} -fvisibility=hidden -fvisibility-inlines-hidden -fdata-sections -ffunction-sections"
)
set(CMAKE_SHARED_LINKER_FLAGS
"${CMAKE_SHARED_LINKER_FLAGS} -Wl,--gc-sections -Wl,-z,nocopyreloc")
add_library(
# Sets the name of the library.
Native
# Sets the library as a shared library.
SHARED
# Provides a relative path to your source file(s).
${SOURCES})
find_library(
# Sets the name of the path variable.
log-lib
# Specifies the name of the NDK library that you want CMake to locate.
log)
add_library(
# Sets the name of the library.
paddle_light_api_shared
# Sets the library as a shared library.
SHARED
# Provides a relative path to your source file(s).
IMPORTED)
set_target_properties(
# Specifies the target library.
paddle_light_api_shared
# Specifies the parameter you want to define.
PROPERTIES
IMPORTED_LOCATION
${PaddleLite_DIR}/cxx/libs/${ANDROID_ABI}/libpaddle_light_api_shared.so
# Provides the path to the library you want to import.
)
# Specifies libraries CMake should link to your target library. You can link
# multiple libraries, such as libraries you define in this build script,
# prebuilt third-party libraries, or system libraries.
target_link_libraries(
# Specifies the target library.
Native
paddle_light_api_shared
${OpenCV_LIBS}
GLESv2
EGL
jnigraphics
${log-lib}
)
add_custom_command(
TARGET Native
POST_BUILD
COMMAND
${CMAKE_COMMAND} -E copy
${PaddleLite_DIR}/cxx/libs/${ANDROID_ABI}/libc++_shared.so
${CMAKE_LIBRARY_OUTPUT_DIRECTORY}/libc++_shared.so)
add_custom_command(
TARGET Native
POST_BUILD
COMMAND
${CMAKE_COMMAND} -E copy
${PaddleLite_DIR}/cxx/libs/${ANDROID_ABI}/libpaddle_light_api_shared.so
${CMAKE_LIBRARY_OUTPUT_DIRECTORY}/libpaddle_light_api_shared.so)
add_custom_command(
TARGET Native
POST_BUILD
COMMAND
${CMAKE_COMMAND} -E copy
${PaddleLite_DIR}/cxx/libs/${ANDROID_ABI}/libhiai.so
${CMAKE_LIBRARY_OUTPUT_DIRECTORY}/libhiai.so)
add_custom_command(
TARGET Native
POST_BUILD
COMMAND
${CMAKE_COMMAND} -E copy
${PaddleLite_DIR}/cxx/libs/${ANDROID_ABI}/libhiai_ir.so
${CMAKE_LIBRARY_OUTPUT_DIRECTORY}/libhiai_ir.so)
add_custom_command(
TARGET Native
POST_BUILD
COMMAND
${CMAKE_COMMAND} -E copy
${PaddleLite_DIR}/cxx/libs/${ANDROID_ABI}/libhiai_ir_build.so
${CMAKE_LIBRARY_OUTPUT_DIRECTORY}/libhiai_ir_build.so)
\ No newline at end of file
//
// Created by fu on 4/25/18.
//
#pragma once
#import <numeric>
#import <vector>
#ifdef __ANDROID__
#include <android/log.h>
#define LOG_TAG "OCR_NDK"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
#define LOGW(...) __android_log_print(ANDROID_LOG_WARN, LOG_TAG, __VA_ARGS__)
#define LOGE(...) __android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__)
#else
#include <stdio.h>
#define LOGI(format, ...) \
fprintf(stdout, "[" LOG_TAG "]" format "\n", ##__VA_ARGS__)
#define LOGW(format, ...) \
fprintf(stdout, "[" LOG_TAG "]" format "\n", ##__VA_ARGS__)
#define LOGE(format, ...) \
fprintf(stderr, "[" LOG_TAG "]Error: " format "\n", ##__VA_ARGS__)
#endif
enum RETURN_CODE { RETURN_OK = 0 };
enum NET_TYPE { NET_OCR = 900100, NET_OCR_INTERNAL = 991008 };
template <typename T> inline T product(const std::vector<T> &vec) {
if (vec.empty()) {
return 0;
}
return std::accumulate(vec.begin(), vec.end(), 1, std::multiplies<T>());
}
//
// Created by fujiayi on 2020/7/5.
//
#include "native.h"
#include "ocr_ppredictor.h"
#include <algorithm>
#include <paddle_api.h>
#include <string>
static paddle::lite_api::PowerMode str_to_cpu_mode(const std::string &cpu_mode);
extern "C" JNIEXPORT jlong JNICALL
Java_com_baidu_paddle_lite_demo_ocr_OCRPredictorNative_init(
JNIEnv *env, jobject thiz, jstring j_det_model_path,
jstring j_rec_model_path, jstring j_cls_model_path, jint j_thread_num,
jstring j_cpu_mode) {
std::string det_model_path = jstring_to_cpp_string(env, j_det_model_path);
std::string rec_model_path = jstring_to_cpp_string(env, j_rec_model_path);
std::string cls_model_path = jstring_to_cpp_string(env, j_cls_model_path);
int thread_num = j_thread_num;
std::string cpu_mode = jstring_to_cpp_string(env, j_cpu_mode);
ppredictor::OCR_Config conf;
conf.thread_num = thread_num;
conf.mode = str_to_cpu_mode(cpu_mode);
ppredictor::OCR_PPredictor *orc_predictor =
new ppredictor::OCR_PPredictor{conf};
orc_predictor->init_from_file(det_model_path, rec_model_path, cls_model_path);
return reinterpret_cast<jlong>(orc_predictor);
}
/**
* "LITE_POWER_HIGH" convert to paddle::lite_api::LITE_POWER_HIGH
* @param cpu_mode
* @return
*/
static paddle::lite_api::PowerMode
str_to_cpu_mode(const std::string &cpu_mode) {
static std::map<std::string, paddle::lite_api::PowerMode> cpu_mode_map{
{"LITE_POWER_HIGH", paddle::lite_api::LITE_POWER_HIGH},
{"LITE_POWER_LOW", paddle::lite_api::LITE_POWER_HIGH},
{"LITE_POWER_FULL", paddle::lite_api::LITE_POWER_FULL},
{"LITE_POWER_NO_BIND", paddle::lite_api::LITE_POWER_NO_BIND},
{"LITE_POWER_RAND_HIGH", paddle::lite_api::LITE_POWER_RAND_HIGH},
{"LITE_POWER_RAND_LOW", paddle::lite_api::LITE_POWER_RAND_LOW}};
std::string upper_key;
std::transform(cpu_mode.cbegin(), cpu_mode.cend(), upper_key.begin(),
::toupper);
auto index = cpu_mode_map.find(upper_key);
if (index == cpu_mode_map.end()) {
LOGE("cpu_mode not found %s", upper_key.c_str());
return paddle::lite_api::LITE_POWER_HIGH;
} else {
return index->second;
}
}
extern "C" JNIEXPORT jfloatArray JNICALL
Java_com_baidu_paddle_lite_demo_ocr_OCRPredictorNative_forward(
JNIEnv *env, jobject thiz, jlong java_pointer, jfloatArray buf,
jfloatArray ddims, jobject original_image) {
LOGI("begin to run native forward");
if (java_pointer == 0) {
LOGE("JAVA pointer is NULL");
return cpp_array_to_jfloatarray(env, nullptr, 0);
}
cv::Mat origin = bitmap_to_cv_mat(env, original_image);
if (origin.size == 0) {
LOGE("origin bitmap cannot convert to CV Mat");
return cpp_array_to_jfloatarray(env, nullptr, 0);
}
ppredictor::OCR_PPredictor *ppredictor =
(ppredictor::OCR_PPredictor *)java_pointer;
std::vector<float> dims_float_arr = jfloatarray_to_float_vector(env, ddims);
std::vector<int64_t> dims_arr;
dims_arr.resize(dims_float_arr.size());
std::copy(dims_float_arr.cbegin(), dims_float_arr.cend(), dims_arr.begin());
// 这里值有点大,就不调用jfloatarray_to_float_vector了
int64_t buf_len = (int64_t)env->GetArrayLength(buf);
jfloat *buf_data = env->GetFloatArrayElements(buf, JNI_FALSE);
float *data = (jfloat *)buf_data;
std::vector<ppredictor::OCRPredictResult> results =
ppredictor->infer_ocr(dims_arr, data, buf_len, NET_OCR, origin);
LOGI("infer_ocr finished with boxes %ld", results.size());
// 这里将std::vector<ppredictor::OCRPredictResult> 序列化成
// float数组,传输到java层再反序列化
std::vector<float> float_arr;
for (const ppredictor::OCRPredictResult &r : results) {
float_arr.push_back(r.points.size());
float_arr.push_back(r.word_index.size());
float_arr.push_back(r.score);
for (const std::vector<int> &point : r.points) {
float_arr.push_back(point.at(0));
float_arr.push_back(point.at(1));
}
for (int index : r.word_index) {
float_arr.push_back(index);
}
}
return cpp_array_to_jfloatarray(env, float_arr.data(), float_arr.size());
}
extern "C" JNIEXPORT void JNICALL
Java_com_baidu_paddle_lite_demo_ocr_OCRPredictorNative_release(
JNIEnv *env, jobject thiz, jlong java_pointer) {
if (java_pointer == 0) {
LOGE("JAVA pointer is NULL");
return;
}
ppredictor::OCR_PPredictor *ppredictor =
(ppredictor::OCR_PPredictor *)java_pointer;
delete ppredictor;
}
\ No newline at end of file
//
// Created by fujiayi on 2020/7/5.
//
#pragma once
#include "common.h"
#include <android/bitmap.h>
#include <jni.h>
#include <opencv2/opencv.hpp>
#include <string>
#include <vector>
inline std::string jstring_to_cpp_string(JNIEnv *env, jstring jstr) {
// In java, a unicode char will be encoded using 2 bytes (utf16).
// so jstring will contain characters utf16. std::string in c++ is
// essentially a string of bytes, not characters, so if we want to
// pass jstring from JNI to c++, we have convert utf16 to bytes.
if (!jstr) {
return "";
}
const jclass stringClass = env->GetObjectClass(jstr);
const jmethodID getBytes =
env->GetMethodID(stringClass, "getBytes", "(Ljava/lang/String;)[B");
const jbyteArray stringJbytes = (jbyteArray)env->CallObjectMethod(
jstr, getBytes, env->NewStringUTF("UTF-8"));
size_t length = (size_t)env->GetArrayLength(stringJbytes);
jbyte *pBytes = env->GetByteArrayElements(stringJbytes, NULL);
std::string ret = std::string(reinterpret_cast<char *>(pBytes), length);
env->ReleaseByteArrayElements(stringJbytes, pBytes, JNI_ABORT);
env->DeleteLocalRef(stringJbytes);
env->DeleteLocalRef(stringClass);
return ret;
}
inline jstring cpp_string_to_jstring(JNIEnv *env, std::string str) {
auto *data = str.c_str();
jclass strClass = env->FindClass("java/lang/String");
jmethodID strClassInitMethodID =
env->GetMethodID(strClass, "<init>", "([BLjava/lang/String;)V");
jbyteArray bytes = env->NewByteArray(strlen(data));
env->SetByteArrayRegion(bytes, 0, strlen(data),
reinterpret_cast<const jbyte *>(data));
jstring encoding = env->NewStringUTF("UTF-8");
jstring res = (jstring)(
env->NewObject(strClass, strClassInitMethodID, bytes, encoding));
env->DeleteLocalRef(strClass);
env->DeleteLocalRef(encoding);
env->DeleteLocalRef(bytes);
return res;
}
inline jfloatArray cpp_array_to_jfloatarray(JNIEnv *env, const float *buf,
int64_t len) {
if (len == 0) {
return env->NewFloatArray(0);
}
jfloatArray result = env->NewFloatArray(len);
env->SetFloatArrayRegion(result, 0, len, buf);
return result;
}
inline jintArray cpp_array_to_jintarray(JNIEnv *env, const int *buf,
int64_t len) {
jintArray result = env->NewIntArray(len);
env->SetIntArrayRegion(result, 0, len, buf);
return result;
}
inline jbyteArray cpp_array_to_jbytearray(JNIEnv *env, const int8_t *buf,
int64_t len) {
jbyteArray result = env->NewByteArray(len);
env->SetByteArrayRegion(result, 0, len, buf);
return result;
}
inline jlongArray int64_vector_to_jlongarray(JNIEnv *env,
const std::vector<int64_t> &vec) {
jlongArray result = env->NewLongArray(vec.size());
jlong *buf = new jlong[vec.size()];
for (size_t i = 0; i < vec.size(); ++i) {
buf[i] = (jlong)vec[i];
}
env->SetLongArrayRegion(result, 0, vec.size(), buf);
delete[] buf;
return result;
}
inline std::vector<int64_t> jlongarray_to_int64_vector(JNIEnv *env,
jlongArray data) {
int data_size = env->GetArrayLength(data);
jlong *data_ptr = env->GetLongArrayElements(data, nullptr);
std::vector<int64_t> data_vec(data_ptr, data_ptr + data_size);
env->ReleaseLongArrayElements(data, data_ptr, 0);
return data_vec;
}
inline std::vector<float> jfloatarray_to_float_vector(JNIEnv *env,
jfloatArray data) {
int data_size = env->GetArrayLength(data);
jfloat *data_ptr = env->GetFloatArrayElements(data, nullptr);
std::vector<float> data_vec(data_ptr, data_ptr + data_size);
env->ReleaseFloatArrayElements(data, data_ptr, 0);
return data_vec;
}
inline cv::Mat bitmap_to_cv_mat(JNIEnv *env, jobject bitmap) {
AndroidBitmapInfo info;
int result = AndroidBitmap_getInfo(env, bitmap, &info);
if (result != ANDROID_BITMAP_RESULT_SUCCESS) {
LOGE("AndroidBitmap_getInfo failed, result: %d", result);
return cv::Mat{};
}
if (info.format != ANDROID_BITMAP_FORMAT_RGBA_8888) {
LOGE("Bitmap format is not RGBA_8888 !");
return cv::Mat{};
}
unsigned char *srcData = NULL;
AndroidBitmap_lockPixels(env, bitmap, (void **)&srcData);
cv::Mat mat = cv::Mat::zeros(info.height, info.width, CV_8UC4);
memcpy(mat.data, srcData, info.height * info.width * 4);
AndroidBitmap_unlockPixels(env, bitmap);
cv::cvtColor(mat, mat, cv::COLOR_RGBA2BGR);
/**
if (!cv::imwrite("/sdcard/1/copy.jpg", mat)){
LOGE("Write image failed " );
}
*/
return mat;
}
/*******************************************************************************
* *
* Author : Angus Johnson *
* Version : 6.4.2 *
* Date : 27 February 2017 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2017 *
* *
* License: *
* Use, modification & distribution is subject to Boost Software License Ver 1. *
* http://www.boost.org/LICENSE_1_0.txt *
* *
* Attributions: *
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
* "A generic solution to polygon clipping" *
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
* http://portal.acm.org/citation.cfm?id=129906 *
* *
* Computer graphics and geometric modeling: implementation and algorithms *
* By Max K. Agoston *
* Springer; 1 edition (January 4, 2005) *
* http://books.google.com/books?q=vatti+clipping+agoston *
* *
* See also: *
* "Polygon Offsetting by Computing Winding Numbers" *
* Paper no. DETC2005-85513 pp. 565-575 *
* ASME 2005 International Design Engineering Technical Conferences *
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
* September 24-28, 2005 , Long Beach, California, USA *
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
* *
*******************************************************************************/
/*******************************************************************************
* *
* This is a translation of the Delphi Clipper library and the naming style *
* used has retained a Delphi flavour. *
* *
*******************************************************************************/
#include "ocr_clipper.hpp"
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <ostream>
#include <stdexcept>
#include <vector>
namespace ClipperLib {
static double const pi = 3.141592653589793238;
static double const two_pi = pi * 2;
static double const def_arc_tolerance = 0.25;
enum Direction { dRightToLeft, dLeftToRight };
static int const Unassigned = -1; // edge not currently 'owning' a solution
static int const Skip = -2; // edge that would otherwise close a path
#define HORIZONTAL (-1.0E+40)
#define TOLERANCE (1.0e-20)
#define NEAR_ZERO(val) (((val) > -TOLERANCE) && ((val) < TOLERANCE))
struct TEdge {
IntPoint Bot;
IntPoint Curr; // current (updated for every new scanbeam)
IntPoint Top;
double Dx;
PolyType PolyTyp;
EdgeSide Side; // side only refers to current side of solution poly
int WindDelta; // 1 or -1 depending on winding direction
int WindCnt;
int WindCnt2; // winding count of the opposite polytype
int OutIdx;
TEdge *Next;
TEdge *Prev;
TEdge *NextInLML;
TEdge *NextInAEL;
TEdge *PrevInAEL;
TEdge *NextInSEL;
TEdge *PrevInSEL;
};
struct IntersectNode {
TEdge *Edge1;
TEdge *Edge2;
IntPoint Pt;
};
struct LocalMinimum {
cInt Y;
TEdge *LeftBound;
TEdge *RightBound;
};
struct OutPt;
// OutRec: contains a path in the clipping solution. Edges in the AEL will
// carry a pointer to an OutRec when they are part of the clipping solution.
struct OutRec {
int Idx;
bool IsHole;
bool IsOpen;
OutRec *FirstLeft; // see comments in clipper.pas
PolyNode *PolyNd;
OutPt *Pts;
OutPt *BottomPt;
};
struct OutPt {
int Idx;
IntPoint Pt;
OutPt *Next;
OutPt *Prev;
};
struct Join {
OutPt *OutPt1;
OutPt *OutPt2;
IntPoint OffPt;
};
struct LocMinSorter {
inline bool operator()(const LocalMinimum &locMin1,
const LocalMinimum &locMin2) {
return locMin2.Y < locMin1.Y;
}
};
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
inline cInt Round(double val) {
if ((val < 0))
return static_cast<cInt>(val - 0.5);
else
return static_cast<cInt>(val + 0.5);
}
//------------------------------------------------------------------------------
inline cInt Abs(cInt val) { return val < 0 ? -val : val; }
//------------------------------------------------------------------------------
// PolyTree methods ...
//------------------------------------------------------------------------------
void PolyTree::Clear() {
for (PolyNodes::size_type i = 0; i < AllNodes.size(); ++i)
delete AllNodes[i];
AllNodes.resize(0);
Childs.resize(0);
}
//------------------------------------------------------------------------------
PolyNode *PolyTree::GetFirst() const {
if (!Childs.empty())
return Childs[0];
else
return 0;
}
//------------------------------------------------------------------------------
int PolyTree::Total() const {
int result = (int)AllNodes.size();
// with negative offsets, ignore the hidden outer polygon ...
if (result > 0 && Childs[0] != AllNodes[0])
result--;
return result;
}
//------------------------------------------------------------------------------
// PolyNode methods ...
//------------------------------------------------------------------------------
PolyNode::PolyNode() : Parent(0), Index(0), m_IsOpen(false) {}
//------------------------------------------------------------------------------
int PolyNode::ChildCount() const { return (int)Childs.size(); }
//------------------------------------------------------------------------------
void PolyNode::AddChild(PolyNode &child) {
unsigned cnt = (unsigned)Childs.size();
Childs.push_back(&child);
child.Parent = this;
child.Index = cnt;
}
//------------------------------------------------------------------------------
PolyNode *PolyNode::GetNext() const {
if (!Childs.empty())
return Childs[0];
else
return GetNextSiblingUp();
}
//------------------------------------------------------------------------------
PolyNode *PolyNode::GetNextSiblingUp() const {
if (!Parent) // protects against PolyTree.GetNextSiblingUp()
return 0;
else if (Index == Parent->Childs.size() - 1)
return Parent->GetNextSiblingUp();
else
return Parent->Childs[Index + 1];
}
//------------------------------------------------------------------------------
bool PolyNode::IsHole() const {
bool result = true;
PolyNode *node = Parent;
while (node) {
result = !result;
node = node->Parent;
}
return result;
}
//------------------------------------------------------------------------------
bool PolyNode::IsOpen() const { return m_IsOpen; }
//------------------------------------------------------------------------------
#ifndef use_int32
//------------------------------------------------------------------------------
// Int128 class (enables safe math on signed 64bit integers)
// eg Int128 val1((long64)9223372036854775807); //ie 2^63 -1
// Int128 val2((long64)9223372036854775807);
// Int128 val3 = val1 * val2;
// val3.AsString => "85070591730234615847396907784232501249" (8.5e+37)
//------------------------------------------------------------------------------
class Int128 {
public:
ulong64 lo;
long64 hi;
Int128(long64 _lo = 0) {
lo = (ulong64)_lo;
if (_lo < 0)
hi = -1;
else
hi = 0;
}
Int128(const Int128 &val) : lo(val.lo), hi(val.hi) {}
Int128(const long64 &_hi, const ulong64 &_lo) : lo(_lo), hi(_hi) {}
Int128 &operator=(const long64 &val) {
lo = (ulong64)val;
if (val < 0)
hi = -1;
else
hi = 0;
return *this;
}
bool operator==(const Int128 &val) const {
return (hi == val.hi && lo == val.lo);
}
bool operator!=(const Int128 &val) const { return !(*this == val); }
bool operator>(const Int128 &val) const {
if (hi != val.hi)
return hi > val.hi;
else
return lo > val.lo;
}
bool operator<(const Int128 &val) const {
if (hi != val.hi)
return hi < val.hi;
else
return lo < val.lo;
}
bool operator>=(const Int128 &val) const { return !(*this < val); }
bool operator<=(const Int128 &val) const { return !(*this > val); }
Int128 &operator+=(const Int128 &rhs) {
hi += rhs.hi;
lo += rhs.lo;
if (lo < rhs.lo)
hi++;
return *this;
}
Int128 operator+(const Int128 &rhs) const {
Int128 result(*this);
result += rhs;
return result;
}
Int128 &operator-=(const Int128 &rhs) {
*this += -rhs;
return *this;
}
Int128 operator-(const Int128 &rhs) const {
Int128 result(*this);
result -= rhs;
return result;
}
Int128 operator-() const // unary negation
{
if (lo == 0)
return Int128(-hi, 0);
else
return Int128(~hi, ~lo + 1);
}
operator double() const {
const double shift64 = 18446744073709551616.0; // 2^64
if (hi < 0) {
if (lo == 0)
return (double)hi * shift64;
else
return -(double)(~lo + ~hi * shift64);
} else
return (double)(lo + hi * shift64);
}
};
//------------------------------------------------------------------------------
Int128 Int128Mul(long64 lhs, long64 rhs) {
bool negate = (lhs < 0) != (rhs < 0);
if (lhs < 0)
lhs = -lhs;
ulong64 int1Hi = ulong64(lhs) >> 32;
ulong64 int1Lo = ulong64(lhs & 0xFFFFFFFF);
if (rhs < 0)
rhs = -rhs;
ulong64 int2Hi = ulong64(rhs) >> 32;
ulong64 int2Lo = ulong64(rhs & 0xFFFFFFFF);
// nb: see comments in clipper.pas
ulong64 a = int1Hi * int2Hi;
ulong64 b = int1Lo * int2Lo;
ulong64 c = int1Hi * int2Lo + int1Lo * int2Hi;
Int128 tmp;
tmp.hi = long64(a + (c >> 32));
tmp.lo = long64(c << 32);
tmp.lo += long64(b);
if (tmp.lo < b)
tmp.hi++;
if (negate)
tmp = -tmp;
return tmp;
};
#endif
//------------------------------------------------------------------------------
// Miscellaneous global functions
//------------------------------------------------------------------------------
bool Orientation(const Path &poly) { return Area(poly) >= 0; }
//------------------------------------------------------------------------------
double Area(const Path &poly) {
int size = (int)poly.size();
if (size < 3)
return 0;
double a = 0;
for (int i = 0, j = size - 1; i < size; ++i) {
a += ((double)poly[j].X + poly[i].X) * ((double)poly[j].Y - poly[i].Y);
j = i;
}
return -a * 0.5;
}
//------------------------------------------------------------------------------
double Area(const OutPt *op) {
const OutPt *startOp = op;
if (!op)
return 0;
double a = 0;
do {
a += (double)(op->Prev->Pt.X + op->Pt.X) *
(double)(op->Prev->Pt.Y - op->Pt.Y);
op = op->Next;
} while (op != startOp);
return a * 0.5;
}
//------------------------------------------------------------------------------
double Area(const OutRec &outRec) { return Area(outRec.Pts); }
//------------------------------------------------------------------------------
bool PointIsVertex(const IntPoint &Pt, OutPt *pp) {
OutPt *pp2 = pp;
do {
if (pp2->Pt == Pt)
return true;
pp2 = pp2->Next;
} while (pp2 != pp);
return false;
}
//------------------------------------------------------------------------------
// See "The Point in Polygon Problem for Arbitrary Polygons" by Hormann &
// Agathos
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5498&rep=rep1&type=pdf
int PointInPolygon(const IntPoint &pt, const Path &path) {
// returns 0 if false, +1 if true, -1 if pt ON polygon boundary
int result = 0;
size_t cnt = path.size();
if (cnt < 3)
return 0;
IntPoint ip = path[0];
for (size_t i = 1; i <= cnt; ++i) {
IntPoint ipNext = (i == cnt ? path[0] : path[i]);
if (ipNext.Y == pt.Y) {
if ((ipNext.X == pt.X) ||
(ip.Y == pt.Y && ((ipNext.X > pt.X) == (ip.X < pt.X))))
return -1;
}
if ((ip.Y < pt.Y) != (ipNext.Y < pt.Y)) {
if (ip.X >= pt.X) {
if (ipNext.X > pt.X)
result = 1 - result;
else {
double d = (double)(ip.X - pt.X) * (ipNext.Y - pt.Y) -
(double)(ipNext.X - pt.X) * (ip.Y - pt.Y);
if (!d)
return -1;
if ((d > 0) == (ipNext.Y > ip.Y))
result = 1 - result;
}
} else {
if (ipNext.X > pt.X) {
double d = (double)(ip.X - pt.X) * (ipNext.Y - pt.Y) -
(double)(ipNext.X - pt.X) * (ip.Y - pt.Y);
if (!d)
return -1;
if ((d > 0) == (ipNext.Y > ip.Y))
result = 1 - result;
}
}
}
ip = ipNext;
}
return result;
}
//------------------------------------------------------------------------------
int PointInPolygon(const IntPoint &pt, OutPt *op) {
// returns 0 if false, +1 if true, -1 if pt ON polygon boundary
int result = 0;
OutPt *startOp = op;
for (;;) {
if (op->Next->Pt.Y == pt.Y) {
if ((op->Next->Pt.X == pt.X) ||
(op->Pt.Y == pt.Y && ((op->Next->Pt.X > pt.X) == (op->Pt.X < pt.X))))
return -1;
}
if ((op->Pt.Y < pt.Y) != (op->Next->Pt.Y < pt.Y)) {
if (op->Pt.X >= pt.X) {
if (op->Next->Pt.X > pt.X)
result = 1 - result;
else {
double d = (double)(op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) -
(double)(op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y);
if (!d)
return -1;
if ((d > 0) == (op->Next->Pt.Y > op->Pt.Y))
result = 1 - result;
}
} else {
if (op->Next->Pt.X > pt.X) {
double d = (double)(op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) -
(double)(op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y);
if (!d)
return -1;
if ((d > 0) == (op->Next->Pt.Y > op->Pt.Y))
result = 1 - result;
}
}
}
op = op->Next;
if (startOp == op)
break;
}
return result;
}
//------------------------------------------------------------------------------
bool Poly2ContainsPoly1(OutPt *OutPt1, OutPt *OutPt2) {
OutPt *op = OutPt1;
do {
// nb: PointInPolygon returns 0 if false, +1 if true, -1 if pt on polygon
int res = PointInPolygon(op->Pt, OutPt2);
if (res >= 0)
return res > 0;
op = op->Next;
} while (op != OutPt1);
return true;
}
//----------------------------------------------------------------------
bool SlopesEqual(const TEdge &e1, const TEdge &e2, bool UseFullInt64Range) {
#ifndef use_int32
if (UseFullInt64Range)
return Int128Mul(e1.Top.Y - e1.Bot.Y, e2.Top.X - e2.Bot.X) ==
Int128Mul(e1.Top.X - e1.Bot.X, e2.Top.Y - e2.Bot.Y);
else
#endif
return (e1.Top.Y - e1.Bot.Y) * (e2.Top.X - e2.Bot.X) ==
(e1.Top.X - e1.Bot.X) * (e2.Top.Y - e2.Bot.Y);
}
//------------------------------------------------------------------------------
bool SlopesEqual(const IntPoint pt1, const IntPoint pt2, const IntPoint pt3,
bool UseFullInt64Range) {
#ifndef use_int32
if (UseFullInt64Range)
return Int128Mul(pt1.Y - pt2.Y, pt2.X - pt3.X) ==
Int128Mul(pt1.X - pt2.X, pt2.Y - pt3.Y);
else
#endif
return (pt1.Y - pt2.Y) * (pt2.X - pt3.X) ==
(pt1.X - pt2.X) * (pt2.Y - pt3.Y);
}
//------------------------------------------------------------------------------
bool SlopesEqual(const IntPoint pt1, const IntPoint pt2, const IntPoint pt3,
const IntPoint pt4, bool UseFullInt64Range) {
#ifndef use_int32
if (UseFullInt64Range)
return Int128Mul(pt1.Y - pt2.Y, pt3.X - pt4.X) ==
Int128Mul(pt1.X - pt2.X, pt3.Y - pt4.Y);
else
#endif
return (pt1.Y - pt2.Y) * (pt3.X - pt4.X) ==
(pt1.X - pt2.X) * (pt3.Y - pt4.Y);
}
//------------------------------------------------------------------------------
inline bool IsHorizontal(TEdge &e) { return e.Dx == HORIZONTAL; }
//------------------------------------------------------------------------------
inline double GetDx(const IntPoint pt1, const IntPoint pt2) {
return (pt1.Y == pt2.Y) ? HORIZONTAL
: (double)(pt2.X - pt1.X) / (pt2.Y - pt1.Y);
}
//---------------------------------------------------------------------------
inline void SetDx(TEdge &e) {
cInt dy = (e.Top.Y - e.Bot.Y);
if (dy == 0)
e.Dx = HORIZONTAL;
else
e.Dx = (double)(e.Top.X - e.Bot.X) / dy;
}
//---------------------------------------------------------------------------
inline void SwapSides(TEdge &Edge1, TEdge &Edge2) {
EdgeSide Side = Edge1.Side;
Edge1.Side = Edge2.Side;
Edge2.Side = Side;
}
//------------------------------------------------------------------------------
inline void SwapPolyIndexes(TEdge &Edge1, TEdge &Edge2) {
int OutIdx = Edge1.OutIdx;
Edge1.OutIdx = Edge2.OutIdx;
Edge2.OutIdx = OutIdx;
}
//------------------------------------------------------------------------------
inline cInt TopX(TEdge &edge, const cInt currentY) {
return (currentY == edge.Top.Y)
? edge.Top.X
: edge.Bot.X + Round(edge.Dx * (currentY - edge.Bot.Y));
}
//------------------------------------------------------------------------------
void IntersectPoint(TEdge &Edge1, TEdge &Edge2, IntPoint &ip) {
#ifdef use_xyz
ip.Z = 0;
#endif
double b1, b2;
if (Edge1.Dx == Edge2.Dx) {
ip.Y = Edge1.Curr.Y;
ip.X = TopX(Edge1, ip.Y);
return;
} else if (Edge1.Dx == 0) {
ip.X = Edge1.Bot.X;
if (IsHorizontal(Edge2))
ip.Y = Edge2.Bot.Y;
else {
b2 = Edge2.Bot.Y - (Edge2.Bot.X / Edge2.Dx);
ip.Y = Round(ip.X / Edge2.Dx + b2);
}
} else if (Edge2.Dx == 0) {
ip.X = Edge2.Bot.X;
if (IsHorizontal(Edge1))
ip.Y = Edge1.Bot.Y;
else {
b1 = Edge1.Bot.Y - (Edge1.Bot.X / Edge1.Dx);
ip.Y = Round(ip.X / Edge1.Dx + b1);
}
} else {
b1 = Edge1.Bot.X - Edge1.Bot.Y * Edge1.Dx;
b2 = Edge2.Bot.X - Edge2.Bot.Y * Edge2.Dx;
double q = (b2 - b1) / (Edge1.Dx - Edge2.Dx);
ip.Y = Round(q);
if (std::fabs(Edge1.Dx) < std::fabs(Edge2.Dx))
ip.X = Round(Edge1.Dx * q + b1);
else
ip.X = Round(Edge2.Dx * q + b2);
}
if (ip.Y < Edge1.Top.Y || ip.Y < Edge2.Top.Y) {
if (Edge1.Top.Y > Edge2.Top.Y)
ip.Y = Edge1.Top.Y;
else
ip.Y = Edge2.Top.Y;
if (std::fabs(Edge1.Dx) < std::fabs(Edge2.Dx))
ip.X = TopX(Edge1, ip.Y);
else
ip.X = TopX(Edge2, ip.Y);
}
// finally, don't allow 'ip' to be BELOW curr.Y (ie bottom of scanbeam) ...
if (ip.Y > Edge1.Curr.Y) {
ip.Y = Edge1.Curr.Y;
// use the more vertical edge to derive X ...
if (std::fabs(Edge1.Dx) > std::fabs(Edge2.Dx))
ip.X = TopX(Edge2, ip.Y);
else
ip.X = TopX(Edge1, ip.Y);
}
}
//------------------------------------------------------------------------------
void ReversePolyPtLinks(OutPt *pp) {
if (!pp)
return;
OutPt *pp1, *pp2;
pp1 = pp;
do {
pp2 = pp1->Next;
pp1->Next = pp1->Prev;
pp1->Prev = pp2;
pp1 = pp2;
} while (pp1 != pp);
}
//------------------------------------------------------------------------------
void DisposeOutPts(OutPt *&pp) {
if (pp == 0)
return;
pp->Prev->Next = 0;
while (pp) {
OutPt *tmpPp = pp;
pp = pp->Next;
delete tmpPp;
}
}
//------------------------------------------------------------------------------
inline void InitEdge(TEdge *e, TEdge *eNext, TEdge *ePrev, const IntPoint &Pt) {
std::memset(e, 0, sizeof(TEdge));
e->Next = eNext;
e->Prev = ePrev;
e->Curr = Pt;
e->OutIdx = Unassigned;
}
//------------------------------------------------------------------------------
void InitEdge2(TEdge &e, PolyType Pt) {
if (e.Curr.Y >= e.Next->Curr.Y) {
e.Bot = e.Curr;
e.Top = e.Next->Curr;
} else {
e.Top = e.Curr;
e.Bot = e.Next->Curr;
}
SetDx(e);
e.PolyTyp = Pt;
}
//------------------------------------------------------------------------------
TEdge *RemoveEdge(TEdge *e) {
// removes e from double_linked_list (but without removing from memory)
e->Prev->Next = e->Next;
e->Next->Prev = e->Prev;
TEdge *result = e->Next;
e->Prev = 0; // flag as removed (see ClipperBase.Clear)
return result;
}
//------------------------------------------------------------------------------
inline void ReverseHorizontal(TEdge &e) {
// swap horizontal edges' Top and Bottom x's so they follow the natural
// progression of the bounds - ie so their xbots will align with the
// adjoining lower edge. [Helpful in the ProcessHorizontal() method.]
std::swap(e.Top.X, e.Bot.X);
#ifdef use_xyz
std::swap(e.Top.Z, e.Bot.Z);
#endif
}
//------------------------------------------------------------------------------
void SwapPoints(IntPoint &pt1, IntPoint &pt2) {
IntPoint tmp = pt1;
pt1 = pt2;
pt2 = tmp;
}
//------------------------------------------------------------------------------
bool GetOverlapSegment(IntPoint pt1a, IntPoint pt1b, IntPoint pt2a,
IntPoint pt2b, IntPoint &pt1, IntPoint &pt2) {
// precondition: segments are Collinear.
if (Abs(pt1a.X - pt1b.X) > Abs(pt1a.Y - pt1b.Y)) {
if (pt1a.X > pt1b.X)
SwapPoints(pt1a, pt1b);
if (pt2a.X > pt2b.X)
SwapPoints(pt2a, pt2b);
if (pt1a.X > pt2a.X)
pt1 = pt1a;
else
pt1 = pt2a;
if (pt1b.X < pt2b.X)
pt2 = pt1b;
else
pt2 = pt2b;
return pt1.X < pt2.X;
} else {
if (pt1a.Y < pt1b.Y)
SwapPoints(pt1a, pt1b);
if (pt2a.Y < pt2b.Y)
SwapPoints(pt2a, pt2b);
if (pt1a.Y < pt2a.Y)
pt1 = pt1a;
else
pt1 = pt2a;
if (pt1b.Y > pt2b.Y)
pt2 = pt1b;
else
pt2 = pt2b;
return pt1.Y > pt2.Y;
}
}
//------------------------------------------------------------------------------
bool FirstIsBottomPt(const OutPt *btmPt1, const OutPt *btmPt2) {
OutPt *p = btmPt1->Prev;
while ((p->Pt == btmPt1->Pt) && (p != btmPt1))
p = p->Prev;
double dx1p = std::fabs(GetDx(btmPt1->Pt, p->Pt));
p = btmPt1->Next;
while ((p->Pt == btmPt1->Pt) && (p != btmPt1))
p = p->Next;
double dx1n = std::fabs(GetDx(btmPt1->Pt, p->Pt));
p = btmPt2->Prev;
while ((p->Pt == btmPt2->Pt) && (p != btmPt2))
p = p->Prev;
double dx2p = std::fabs(GetDx(btmPt2->Pt, p->Pt));
p = btmPt2->Next;
while ((p->Pt == btmPt2->Pt) && (p != btmPt2))
p = p->Next;
double dx2n = std::fabs(GetDx(btmPt2->Pt, p->Pt));
if (std::max(dx1p, dx1n) == std::max(dx2p, dx2n) &&
std::min(dx1p, dx1n) == std::min(dx2p, dx2n))
return Area(btmPt1) > 0; // if otherwise identical use orientation
else
return (dx1p >= dx2p && dx1p >= dx2n) || (dx1n >= dx2p && dx1n >= dx2n);
}
//------------------------------------------------------------------------------
OutPt *GetBottomPt(OutPt *pp) {
OutPt *dups = 0;
OutPt *p = pp->Next;
while (p != pp) {
if (p->Pt.Y > pp->Pt.Y) {
pp = p;
dups = 0;
} else if (p->Pt.Y == pp->Pt.Y && p->Pt.X <= pp->Pt.X) {
if (p->Pt.X < pp->Pt.X) {
dups = 0;
pp = p;
} else {
if (p->Next != pp && p->Prev != pp)
dups = p;
}
}
p = p->Next;
}
if (dups) {
// there appears to be at least 2 vertices at BottomPt so ...
while (dups != p) {
if (!FirstIsBottomPt(p, dups))
pp = dups;
dups = dups->Next;
while (dups->Pt != pp->Pt)
dups = dups->Next;
}
}
return pp;
}
//------------------------------------------------------------------------------
bool Pt2IsBetweenPt1AndPt3(const IntPoint pt1, const IntPoint pt2,
const IntPoint pt3) {
if ((pt1 == pt3) || (pt1 == pt2) || (pt3 == pt2))
return false;
else if (pt1.X != pt3.X)
return (pt2.X > pt1.X) == (pt2.X < pt3.X);
else
return (pt2.Y > pt1.Y) == (pt2.Y < pt3.Y);
}
//------------------------------------------------------------------------------
bool HorzSegmentsOverlap(cInt seg1a, cInt seg1b, cInt seg2a, cInt seg2b) {
if (seg1a > seg1b)
std::swap(seg1a, seg1b);
if (seg2a > seg2b)
std::swap(seg2a, seg2b);
return (seg1a < seg2b) && (seg2a < seg1b);
}
//------------------------------------------------------------------------------
// ClipperBase class methods ...
//------------------------------------------------------------------------------
ClipperBase::ClipperBase() // constructor
{
m_CurrentLM = m_MinimaList.begin(); // begin() == end() here
m_UseFullRange = false;
}
//------------------------------------------------------------------------------
ClipperBase::~ClipperBase() // destructor
{
Clear();
}
//------------------------------------------------------------------------------
void RangeTest(const IntPoint &Pt, bool &useFullRange) {
if (useFullRange) {
if (Pt.X > hiRange || Pt.Y > hiRange || -Pt.X > hiRange || -Pt.Y > hiRange)
throw clipperException("Coordinate outside allowed range");
} else if (Pt.X > loRange || Pt.Y > loRange || -Pt.X > loRange ||
-Pt.Y > loRange) {
useFullRange = true;
RangeTest(Pt, useFullRange);
}
}
//------------------------------------------------------------------------------
TEdge *FindNextLocMin(TEdge *E) {
for (;;) {
while (E->Bot != E->Prev->Bot || E->Curr == E->Top)
E = E->Next;
if (!IsHorizontal(*E) && !IsHorizontal(*E->Prev))
break;
while (IsHorizontal(*E->Prev))
E = E->Prev;
TEdge *E2 = E;
while (IsHorizontal(*E))
E = E->Next;
if (E->Top.Y == E->Prev->Bot.Y)
continue; // ie just an intermediate horz.
if (E2->Prev->Bot.X < E->Bot.X)
E = E2;
break;
}
return E;
}
//------------------------------------------------------------------------------
TEdge *ClipperBase::ProcessBound(TEdge *E, bool NextIsForward) {
TEdge *Result = E;
TEdge *Horz = 0;
if (E->OutIdx == Skip) {
// if edges still remain in the current bound beyond the skip edge then
// create another LocMin and call ProcessBound once more
if (NextIsForward) {
while (E->Top.Y == E->Next->Bot.Y)
E = E->Next;
// don't include top horizontals when parsing a bound a second time,
// they will be contained in the opposite bound ...
while (E != Result && IsHorizontal(*E))
E = E->Prev;
} else {
while (E->Top.Y == E->Prev->Bot.Y)
E = E->Prev;
while (E != Result && IsHorizontal(*E))
E = E->Next;
}
if (E == Result) {
if (NextIsForward)
Result = E->Next;
else
Result = E->Prev;
} else {
// there are more edges in the bound beyond result starting with E
if (NextIsForward)
E = Result->Next;
else
E = Result->Prev;
MinimaList::value_type locMin;
locMin.Y = E->Bot.Y;
locMin.LeftBound = 0;
locMin.RightBound = E;
E->WindDelta = 0;
Result = ProcessBound(E, NextIsForward);
m_MinimaList.push_back(locMin);
}
return Result;
}
TEdge *EStart;
if (IsHorizontal(*E)) {
// We need to be careful with open paths because this may not be a
// true local minima (ie E may be following a skip edge).
// Also, consecutive horz. edges may start heading left before going right.
if (NextIsForward)
EStart = E->Prev;
else
EStart = E->Next;
if (IsHorizontal(*EStart)) // ie an adjoining horizontal skip edge
{
if (EStart->Bot.X != E->Bot.X && EStart->Top.X != E->Bot.X)
ReverseHorizontal(*E);
} else if (EStart->Bot.X != E->Bot.X)
ReverseHorizontal(*E);
}
EStart = E;
if (NextIsForward) {
while (Result->Top.Y == Result->Next->Bot.Y && Result->Next->OutIdx != Skip)
Result = Result->Next;
if (IsHorizontal(*Result) && Result->Next->OutIdx != Skip) {
// nb: at the top of a bound, horizontals are added to the bound
// only when the preceding edge attaches to the horizontal's left vertex
// unless a Skip edge is encountered when that becomes the top divide
Horz = Result;
while (IsHorizontal(*Horz->Prev))
Horz = Horz->Prev;
if (Horz->Prev->Top.X > Result->Next->Top.X)
Result = Horz->Prev;
}
while (E != Result) {
E->NextInLML = E->Next;
if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Prev->Top.X)
ReverseHorizontal(*E);
E = E->Next;
}
if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Prev->Top.X)
ReverseHorizontal(*E);
Result = Result->Next; // move to the edge just beyond current bound
} else {
while (Result->Top.Y == Result->Prev->Bot.Y && Result->Prev->OutIdx != Skip)
Result = Result->Prev;
if (IsHorizontal(*Result) && Result->Prev->OutIdx != Skip) {
Horz = Result;
while (IsHorizontal(*Horz->Next))
Horz = Horz->Next;
if (Horz->Next->Top.X == Result->Prev->Top.X ||
Horz->Next->Top.X > Result->Prev->Top.X)
Result = Horz->Next;
}
while (E != Result) {
E->NextInLML = E->Prev;
if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Next->Top.X)
ReverseHorizontal(*E);
E = E->Prev;
}
if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Next->Top.X)
ReverseHorizontal(*E);
Result = Result->Prev; // move to the edge just beyond current bound
}
return Result;
}
//------------------------------------------------------------------------------
bool ClipperBase::AddPath(const Path &pg, PolyType PolyTyp, bool Closed) {
#ifdef use_lines
if (!Closed && PolyTyp == ptClip)
throw clipperException("AddPath: Open paths must be subject.");
#else
if (!Closed)
throw clipperException("AddPath: Open paths have been disabled.");
#endif
int highI = (int)pg.size() - 1;
if (Closed)
while (highI > 0 && (pg[highI] == pg[0]))
--highI;
while (highI > 0 && (pg[highI] == pg[highI - 1]))
--highI;
if ((Closed && highI < 2) || (!Closed && highI < 1))
return false;
// create a new edge array ...
TEdge *edges = new TEdge[highI + 1];
bool IsFlat = true;
// 1. Basic (first) edge initialization ...
try {
edges[1].Curr = pg[1];
RangeTest(pg[0], m_UseFullRange);
RangeTest(pg[highI], m_UseFullRange);
InitEdge(&edges[0], &edges[1], &edges[highI], pg[0]);
InitEdge(&edges[highI], &edges[0], &edges[highI - 1], pg[highI]);
for (int i = highI - 1; i >= 1; --i) {
RangeTest(pg[i], m_UseFullRange);
InitEdge(&edges[i], &edges[i + 1], &edges[i - 1], pg[i]);
}
} catch (...) {
delete[] edges;
throw; // range test fails
}
TEdge *eStart = &edges[0];
// 2. Remove duplicate vertices, and (when closed) collinear edges ...
TEdge *E = eStart, *eLoopStop = eStart;
for (;;) {
// nb: allows matching start and end points when not Closed ...
if (E->Curr == E->Next->Curr && (Closed || E->Next != eStart)) {
if (E == E->Next)
break;
if (E == eStart)
eStart = E->Next;
E = RemoveEdge(E);
eLoopStop = E;
continue;
}
if (E->Prev == E->Next)
break; // only two vertices
else if (Closed && SlopesEqual(E->Prev->Curr, E->Curr, E->Next->Curr,
m_UseFullRange) &&
(!m_PreserveCollinear ||
!Pt2IsBetweenPt1AndPt3(E->Prev->Curr, E->Curr, E->Next->Curr))) {
// Collinear edges are allowed for open paths but in closed paths
// the default is to merge adjacent collinear edges into a single edge.
// However, if the PreserveCollinear property is enabled, only overlapping
// collinear edges (ie spikes) will be removed from closed paths.
if (E == eStart)
eStart = E->Next;
E = RemoveEdge(E);
E = E->Prev;
eLoopStop = E;
continue;
}
E = E->Next;
if ((E == eLoopStop) || (!Closed && E->Next == eStart))
break;
}
if ((!Closed && (E == E->Next)) || (Closed && (E->Prev == E->Next))) {
delete[] edges;
return false;
}
if (!Closed) {
m_HasOpenPaths = true;
eStart->Prev->OutIdx = Skip;
}
// 3. Do second stage of edge initialization ...
E = eStart;
do {
InitEdge2(*E, PolyTyp);
E = E->Next;
if (IsFlat && E->Curr.Y != eStart->Curr.Y)
IsFlat = false;
} while (E != eStart);
// 4. Finally, add edge bounds to LocalMinima list ...
// Totally flat paths must be handled differently when adding them
// to LocalMinima list to avoid endless loops etc ...
if (IsFlat) {
if (Closed) {
delete[] edges;
return false;
}
E->Prev->OutIdx = Skip;
MinimaList::value_type locMin;
locMin.Y = E->Bot.Y;
locMin.LeftBound = 0;
locMin.RightBound = E;
locMin.RightBound->Side = esRight;
locMin.RightBound->WindDelta = 0;
for (;;) {
if (E->Bot.X != E->Prev->Top.X)
ReverseHorizontal(*E);
if (E->Next->OutIdx == Skip)
break;
E->NextInLML = E->Next;
E = E->Next;
}
m_MinimaList.push_back(locMin);
m_edges.push_back(edges);
return true;
}
m_edges.push_back(edges);
bool leftBoundIsForward;
TEdge *EMin = 0;
// workaround to avoid an endless loop in the while loop below when
// open paths have matching start and end points ...
if (E->Prev->Bot == E->Prev->Top)
E = E->Next;
for (;;) {
E = FindNextLocMin(E);
if (E == EMin)
break;
else if (!EMin)
EMin = E;
// E and E.Prev now share a local minima (left aligned if horizontal).
// Compare their slopes to find which starts which bound ...
MinimaList::value_type locMin;
locMin.Y = E->Bot.Y;
if (E->Dx < E->Prev->Dx) {
locMin.LeftBound = E->Prev;
locMin.RightBound = E;
leftBoundIsForward = false; // Q.nextInLML = Q.prev
} else {
locMin.LeftBound = E;
locMin.RightBound = E->Prev;
leftBoundIsForward = true; // Q.nextInLML = Q.next
}
if (!Closed)
locMin.LeftBound->WindDelta = 0;
else if (locMin.LeftBound->Next == locMin.RightBound)
locMin.LeftBound->WindDelta = -1;
else
locMin.LeftBound->WindDelta = 1;
locMin.RightBound->WindDelta = -locMin.LeftBound->WindDelta;
E = ProcessBound(locMin.LeftBound, leftBoundIsForward);
if (E->OutIdx == Skip)
E = ProcessBound(E, leftBoundIsForward);
TEdge *E2 = ProcessBound(locMin.RightBound, !leftBoundIsForward);
if (E2->OutIdx == Skip)
E2 = ProcessBound(E2, !leftBoundIsForward);
if (locMin.LeftBound->OutIdx == Skip)
locMin.LeftBound = 0;
else if (locMin.RightBound->OutIdx == Skip)
locMin.RightBound = 0;
m_MinimaList.push_back(locMin);
if (!leftBoundIsForward)
E = E2;
}
return true;
}
//------------------------------------------------------------------------------
bool ClipperBase::AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed) {
bool result = false;
for (Paths::size_type i = 0; i < ppg.size(); ++i)
if (AddPath(ppg[i], PolyTyp, Closed))
result = true;
return result;
}
//------------------------------------------------------------------------------
void ClipperBase::Clear() {
DisposeLocalMinimaList();
for (EdgeList::size_type i = 0; i < m_edges.size(); ++i) {
TEdge *edges = m_edges[i];
delete[] edges;
}
m_edges.clear();
m_UseFullRange = false;
m_HasOpenPaths = false;
}
//------------------------------------------------------------------------------
void ClipperBase::Reset() {
m_CurrentLM = m_MinimaList.begin();
if (m_CurrentLM == m_MinimaList.end())
return; // ie nothing to process
std::sort(m_MinimaList.begin(), m_MinimaList.end(), LocMinSorter());
m_Scanbeam = ScanbeamList(); // clears/resets priority_queue
// reset all edges ...
for (MinimaList::iterator lm = m_MinimaList.begin(); lm != m_MinimaList.end();
++lm) {
InsertScanbeam(lm->Y);
TEdge *e = lm->LeftBound;
if (e) {
e->Curr = e->Bot;
e->Side = esLeft;
e->OutIdx = Unassigned;
}
e = lm->RightBound;
if (e) {
e->Curr = e->Bot;
e->Side = esRight;
e->OutIdx = Unassigned;
}
}
m_ActiveEdges = 0;
m_CurrentLM = m_MinimaList.begin();
}
//------------------------------------------------------------------------------
void ClipperBase::DisposeLocalMinimaList() {
m_MinimaList.clear();
m_CurrentLM = m_MinimaList.begin();
}
//------------------------------------------------------------------------------
bool ClipperBase::PopLocalMinima(cInt Y, const LocalMinimum *&locMin) {
if (m_CurrentLM == m_MinimaList.end() || (*m_CurrentLM).Y != Y)
return false;
locMin = &(*m_CurrentLM);
++m_CurrentLM;
return true;
}
//------------------------------------------------------------------------------
IntRect ClipperBase::GetBounds() {
IntRect result;
MinimaList::iterator lm = m_MinimaList.begin();
if (lm == m_MinimaList.end()) {
result.left = result.top = result.right = result.bottom = 0;
return result;
}
result.left = lm->LeftBound->Bot.X;
result.top = lm->LeftBound->Bot.Y;
result.right = lm->LeftBound->Bot.X;
result.bottom = lm->LeftBound->Bot.Y;
while (lm != m_MinimaList.end()) {
// todo - needs fixing for open paths
result.bottom = std::max(result.bottom, lm->LeftBound->Bot.Y);
TEdge *e = lm->LeftBound;
for (;;) {
TEdge *bottomE = e;
while (e->NextInLML) {
if (e->Bot.X < result.left)
result.left = e->Bot.X;
if (e->Bot.X > result.right)
result.right = e->Bot.X;
e = e->NextInLML;
}
result.left = std::min(result.left, e->Bot.X);
result.right = std::max(result.right, e->Bot.X);
result.left = std::min(result.left, e->Top.X);
result.right = std::max(result.right, e->Top.X);
result.top = std::min(result.top, e->Top.Y);
if (bottomE == lm->LeftBound)
e = lm->RightBound;
else
break;
}
++lm;
}
return result;
}
//------------------------------------------------------------------------------
void ClipperBase::InsertScanbeam(const cInt Y) { m_Scanbeam.push(Y); }
//------------------------------------------------------------------------------
bool ClipperBase::PopScanbeam(cInt &Y) {
if (m_Scanbeam.empty())
return false;
Y = m_Scanbeam.top();
m_Scanbeam.pop();
while (!m_Scanbeam.empty() && Y == m_Scanbeam.top()) {
m_Scanbeam.pop();
} // Pop duplicates.
return true;
}
//------------------------------------------------------------------------------
void ClipperBase::DisposeAllOutRecs() {
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i)
DisposeOutRec(i);
m_PolyOuts.clear();
}
//------------------------------------------------------------------------------
void ClipperBase::DisposeOutRec(PolyOutList::size_type index) {
OutRec *outRec = m_PolyOuts[index];
if (outRec->Pts)
DisposeOutPts(outRec->Pts);
delete outRec;
m_PolyOuts[index] = 0;
}
//------------------------------------------------------------------------------
void ClipperBase::DeleteFromAEL(TEdge *e) {
TEdge *AelPrev = e->PrevInAEL;
TEdge *AelNext = e->NextInAEL;
if (!AelPrev && !AelNext && (e != m_ActiveEdges))
return; // already deleted
if (AelPrev)
AelPrev->NextInAEL = AelNext;
else
m_ActiveEdges = AelNext;
if (AelNext)
AelNext->PrevInAEL = AelPrev;
e->NextInAEL = 0;
e->PrevInAEL = 0;
}
//------------------------------------------------------------------------------
OutRec *ClipperBase::CreateOutRec() {
OutRec *result = new OutRec;
result->IsHole = false;
result->IsOpen = false;
result->FirstLeft = 0;
result->Pts = 0;
result->BottomPt = 0;
result->PolyNd = 0;
m_PolyOuts.push_back(result);
result->Idx = (int)m_PolyOuts.size() - 1;
return result;
}
//------------------------------------------------------------------------------
void ClipperBase::SwapPositionsInAEL(TEdge *Edge1, TEdge *Edge2) {
// check that one or other edge hasn't already been removed from AEL ...
if (Edge1->NextInAEL == Edge1->PrevInAEL ||
Edge2->NextInAEL == Edge2->PrevInAEL)
return;
if (Edge1->NextInAEL == Edge2) {
TEdge *Next = Edge2->NextInAEL;
if (Next)
Next->PrevInAEL = Edge1;
TEdge *Prev = Edge1->PrevInAEL;
if (Prev)
Prev->NextInAEL = Edge2;
Edge2->PrevInAEL = Prev;
Edge2->NextInAEL = Edge1;
Edge1->PrevInAEL = Edge2;
Edge1->NextInAEL = Next;
} else if (Edge2->NextInAEL == Edge1) {
TEdge *Next = Edge1->NextInAEL;
if (Next)
Next->PrevInAEL = Edge2;
TEdge *Prev = Edge2->PrevInAEL;
if (Prev)
Prev->NextInAEL = Edge1;
Edge1->PrevInAEL = Prev;
Edge1->NextInAEL = Edge2;
Edge2->PrevInAEL = Edge1;
Edge2->NextInAEL = Next;
} else {
TEdge *Next = Edge1->NextInAEL;
TEdge *Prev = Edge1->PrevInAEL;
Edge1->NextInAEL = Edge2->NextInAEL;
if (Edge1->NextInAEL)
Edge1->NextInAEL->PrevInAEL = Edge1;
Edge1->PrevInAEL = Edge2->PrevInAEL;
if (Edge1->PrevInAEL)
Edge1->PrevInAEL->NextInAEL = Edge1;
Edge2->NextInAEL = Next;
if (Edge2->NextInAEL)
Edge2->NextInAEL->PrevInAEL = Edge2;
Edge2->PrevInAEL = Prev;
if (Edge2->PrevInAEL)
Edge2->PrevInAEL->NextInAEL = Edge2;
}
if (!Edge1->PrevInAEL)
m_ActiveEdges = Edge1;
else if (!Edge2->PrevInAEL)
m_ActiveEdges = Edge2;
}
//------------------------------------------------------------------------------
void ClipperBase::UpdateEdgeIntoAEL(TEdge *&e) {
if (!e->NextInLML)
throw clipperException("UpdateEdgeIntoAEL: invalid call");
e->NextInLML->OutIdx = e->OutIdx;
TEdge *AelPrev = e->PrevInAEL;
TEdge *AelNext = e->NextInAEL;
if (AelPrev)
AelPrev->NextInAEL = e->NextInLML;
else
m_ActiveEdges = e->NextInLML;
if (AelNext)
AelNext->PrevInAEL = e->NextInLML;
e->NextInLML->Side = e->Side;
e->NextInLML->WindDelta = e->WindDelta;
e->NextInLML->WindCnt = e->WindCnt;
e->NextInLML->WindCnt2 = e->WindCnt2;
e = e->NextInLML;
e->Curr = e->Bot;
e->PrevInAEL = AelPrev;
e->NextInAEL = AelNext;
if (!IsHorizontal(*e))
InsertScanbeam(e->Top.Y);
}
//------------------------------------------------------------------------------
bool ClipperBase::LocalMinimaPending() {
return (m_CurrentLM != m_MinimaList.end());
}
//------------------------------------------------------------------------------
// TClipper methods ...
//------------------------------------------------------------------------------
Clipper::Clipper(int initOptions)
: ClipperBase() // constructor
{
m_ExecuteLocked = false;
m_UseFullRange = false;
m_ReverseOutput = ((initOptions & ioReverseSolution) != 0);
m_StrictSimple = ((initOptions & ioStrictlySimple) != 0);
m_PreserveCollinear = ((initOptions & ioPreserveCollinear) != 0);
m_HasOpenPaths = false;
#ifdef use_xyz
m_ZFill = 0;
#endif
}
//------------------------------------------------------------------------------
#ifdef use_xyz
void Clipper::ZFillFunction(ZFillCallback zFillFunc) { m_ZFill = zFillFunc; }
//------------------------------------------------------------------------------
#endif
bool Clipper::Execute(ClipType clipType, Paths &solution,
PolyFillType fillType) {
return Execute(clipType, solution, fillType, fillType);
}
//------------------------------------------------------------------------------
bool Clipper::Execute(ClipType clipType, PolyTree &polytree,
PolyFillType fillType) {
return Execute(clipType, polytree, fillType, fillType);
}
//------------------------------------------------------------------------------
bool Clipper::Execute(ClipType clipType, Paths &solution,
PolyFillType subjFillType, PolyFillType clipFillType) {
if (m_ExecuteLocked)
return false;
if (m_HasOpenPaths)
throw clipperException(
"Error: PolyTree struct is needed for open path clipping.");
m_ExecuteLocked = true;
solution.resize(0);
m_SubjFillType = subjFillType;
m_ClipFillType = clipFillType;
m_ClipType = clipType;
m_UsingPolyTree = false;
bool succeeded = ExecuteInternal();
if (succeeded)
BuildResult(solution);
DisposeAllOutRecs();
m_ExecuteLocked = false;
return succeeded;
}
//------------------------------------------------------------------------------
bool Clipper::Execute(ClipType clipType, PolyTree &polytree,
PolyFillType subjFillType, PolyFillType clipFillType) {
if (m_ExecuteLocked)
return false;
m_ExecuteLocked = true;
m_SubjFillType = subjFillType;
m_ClipFillType = clipFillType;
m_ClipType = clipType;
m_UsingPolyTree = true;
bool succeeded = ExecuteInternal();
if (succeeded)
BuildResult2(polytree);
DisposeAllOutRecs();
m_ExecuteLocked = false;
return succeeded;
}
//------------------------------------------------------------------------------
void Clipper::FixHoleLinkage(OutRec &outrec) {
// skip OutRecs that (a) contain outermost polygons or
//(b) already have the correct owner/child linkage ...
if (!outrec.FirstLeft ||
(outrec.IsHole != outrec.FirstLeft->IsHole && outrec.FirstLeft->Pts))
return;
OutRec *orfl = outrec.FirstLeft;
while (orfl && ((orfl->IsHole == outrec.IsHole) || !orfl->Pts))
orfl = orfl->FirstLeft;
outrec.FirstLeft = orfl;
}
//------------------------------------------------------------------------------
bool Clipper::ExecuteInternal() {
bool succeeded = true;
try {
Reset();
m_Maxima = MaximaList();
m_SortedEdges = 0;
succeeded = true;
cInt botY, topY;
if (!PopScanbeam(botY))
return false;
InsertLocalMinimaIntoAEL(botY);
while (PopScanbeam(topY) || LocalMinimaPending()) {
ProcessHorizontals();
ClearGhostJoins();
if (!ProcessIntersections(topY)) {
succeeded = false;
break;
}
ProcessEdgesAtTopOfScanbeam(topY);
botY = topY;
InsertLocalMinimaIntoAEL(botY);
}
} catch (...) {
succeeded = false;
}
if (succeeded) {
// fix orientations ...
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) {
OutRec *outRec = m_PolyOuts[i];
if (!outRec->Pts || outRec->IsOpen)
continue;
if ((outRec->IsHole ^ m_ReverseOutput) == (Area(*outRec) > 0))
ReversePolyPtLinks(outRec->Pts);
}
if (!m_Joins.empty())
JoinCommonEdges();
// unfortunately FixupOutPolygon() must be done after JoinCommonEdges()
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) {
OutRec *outRec = m_PolyOuts[i];
if (!outRec->Pts)
continue;
if (outRec->IsOpen)
FixupOutPolyline(*outRec);
else
FixupOutPolygon(*outRec);
}
if (m_StrictSimple)
DoSimplePolygons();
}
ClearJoins();
ClearGhostJoins();
return succeeded;
}
//------------------------------------------------------------------------------
void Clipper::SetWindingCount(TEdge &edge) {
TEdge *e = edge.PrevInAEL;
// find the edge of the same polytype that immediately preceeds 'edge' in AEL
while (e && ((e->PolyTyp != edge.PolyTyp) || (e->WindDelta == 0)))
e = e->PrevInAEL;
if (!e) {
if (edge.WindDelta == 0) {
PolyFillType pft =
(edge.PolyTyp == ptSubject ? m_SubjFillType : m_ClipFillType);
edge.WindCnt = (pft == pftNegative ? -1 : 1);
} else
edge.WindCnt = edge.WindDelta;
edge.WindCnt2 = 0;
e = m_ActiveEdges; // ie get ready to calc WindCnt2
} else if (edge.WindDelta == 0 && m_ClipType != ctUnion) {
edge.WindCnt = 1;
edge.WindCnt2 = e->WindCnt2;
e = e->NextInAEL; // ie get ready to calc WindCnt2
} else if (IsEvenOddFillType(edge)) {
// EvenOdd filling ...
if (edge.WindDelta == 0) {
// are we inside a subj polygon ...
bool Inside = true;
TEdge *e2 = e->PrevInAEL;
while (e2) {
if (e2->PolyTyp == e->PolyTyp && e2->WindDelta != 0)
Inside = !Inside;
e2 = e2->PrevInAEL;
}
edge.WindCnt = (Inside ? 0 : 1);
} else {
edge.WindCnt = edge.WindDelta;
}
edge.WindCnt2 = e->WindCnt2;
e = e->NextInAEL; // ie get ready to calc WindCnt2
} else {
// nonZero, Positive or Negative filling ...
if (e->WindCnt * e->WindDelta < 0) {
// prev edge is 'decreasing' WindCount (WC) toward zero
// so we're outside the previous polygon ...
if (Abs(e->WindCnt) > 1) {
// outside prev poly but still inside another.
// when reversing direction of prev poly use the same WC
if (e->WindDelta * edge.WindDelta < 0)
edge.WindCnt = e->WindCnt;
// otherwise continue to 'decrease' WC ...
else
edge.WindCnt = e->WindCnt + edge.WindDelta;
} else
// now outside all polys of same polytype so set own WC ...
edge.WindCnt = (edge.WindDelta == 0 ? 1 : edge.WindDelta);
} else {
// prev edge is 'increasing' WindCount (WC) away from zero
// so we're inside the previous polygon ...
if (edge.WindDelta == 0)
edge.WindCnt = (e->WindCnt < 0 ? e->WindCnt - 1 : e->WindCnt + 1);
// if wind direction is reversing prev then use same WC
else if (e->WindDelta * edge.WindDelta < 0)
edge.WindCnt = e->WindCnt;
// otherwise add to WC ...
else
edge.WindCnt = e->WindCnt + edge.WindDelta;
}
edge.WindCnt2 = e->WindCnt2;
e = e->NextInAEL; // ie get ready to calc WindCnt2
}
// update WindCnt2 ...
if (IsEvenOddAltFillType(edge)) {
// EvenOdd filling ...
while (e != &edge) {
if (e->WindDelta != 0)
edge.WindCnt2 = (edge.WindCnt2 == 0 ? 1 : 0);
e = e->NextInAEL;
}
} else {
// nonZero, Positive or Negative filling ...
while (e != &edge) {
edge.WindCnt2 += e->WindDelta;
e = e->NextInAEL;
}
}
}
//------------------------------------------------------------------------------
bool Clipper::IsEvenOddFillType(const TEdge &edge) const {
if (edge.PolyTyp == ptSubject)
return m_SubjFillType == pftEvenOdd;
else
return m_ClipFillType == pftEvenOdd;
}
//------------------------------------------------------------------------------
bool Clipper::IsEvenOddAltFillType(const TEdge &edge) const {
if (edge.PolyTyp == ptSubject)
return m_ClipFillType == pftEvenOdd;
else
return m_SubjFillType == pftEvenOdd;
}
//------------------------------------------------------------------------------
bool Clipper::IsContributing(const TEdge &edge) const {
PolyFillType pft, pft2;
if (edge.PolyTyp == ptSubject) {
pft = m_SubjFillType;
pft2 = m_ClipFillType;
} else {
pft = m_ClipFillType;
pft2 = m_SubjFillType;
}
switch (pft) {
case pftEvenOdd:
// return false if a subj line has been flagged as inside a subj polygon
if (edge.WindDelta == 0 && edge.WindCnt != 1)
return false;
break;
case pftNonZero:
if (Abs(edge.WindCnt) != 1)
return false;
break;
case pftPositive:
if (edge.WindCnt != 1)
return false;
break;
default: // pftNegative
if (edge.WindCnt != -1)
return false;
}
switch (m_ClipType) {
case ctIntersection:
switch (pft2) {
case pftEvenOdd:
case pftNonZero:
return (edge.WindCnt2 != 0);
case pftPositive:
return (edge.WindCnt2 > 0);
default:
return (edge.WindCnt2 < 0);
}
break;
case ctUnion:
switch (pft2) {
case pftEvenOdd:
case pftNonZero:
return (edge.WindCnt2 == 0);
case pftPositive:
return (edge.WindCnt2 <= 0);
default:
return (edge.WindCnt2 >= 0);
}
break;
case ctDifference:
if (edge.PolyTyp == ptSubject)
switch (pft2) {
case pftEvenOdd:
case pftNonZero:
return (edge.WindCnt2 == 0);
case pftPositive:
return (edge.WindCnt2 <= 0);
default:
return (edge.WindCnt2 >= 0);
}
else
switch (pft2) {
case pftEvenOdd:
case pftNonZero:
return (edge.WindCnt2 != 0);
case pftPositive:
return (edge.WindCnt2 > 0);
default:
return (edge.WindCnt2 < 0);
}
break;
case ctXor:
if (edge.WindDelta == 0) // XOr always contributing unless open
switch (pft2) {
case pftEvenOdd:
case pftNonZero:
return (edge.WindCnt2 == 0);
case pftPositive:
return (edge.WindCnt2 <= 0);
default:
return (edge.WindCnt2 >= 0);
}
else
return true;
break;
default:
return true;
}
}
//------------------------------------------------------------------------------
OutPt *Clipper::AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &Pt) {
OutPt *result;
TEdge *e, *prevE;
if (IsHorizontal(*e2) || (e1->Dx > e2->Dx)) {
result = AddOutPt(e1, Pt);
e2->OutIdx = e1->OutIdx;
e1->Side = esLeft;
e2->Side = esRight;
e = e1;
if (e->PrevInAEL == e2)
prevE = e2->PrevInAEL;
else
prevE = e->PrevInAEL;
} else {
result = AddOutPt(e2, Pt);
e1->OutIdx = e2->OutIdx;
e1->Side = esRight;
e2->Side = esLeft;
e = e2;
if (e->PrevInAEL == e1)
prevE = e1->PrevInAEL;
else
prevE = e->PrevInAEL;
}
if (prevE && prevE->OutIdx >= 0 && prevE->Top.Y < Pt.Y && e->Top.Y < Pt.Y) {
cInt xPrev = TopX(*prevE, Pt.Y);
cInt xE = TopX(*e, Pt.Y);
if (xPrev == xE && (e->WindDelta != 0) && (prevE->WindDelta != 0) &&
SlopesEqual(IntPoint(xPrev, Pt.Y), prevE->Top, IntPoint(xE, Pt.Y),
e->Top, m_UseFullRange)) {
OutPt *outPt = AddOutPt(prevE, Pt);
AddJoin(result, outPt, e->Top);
}
}
return result;
}
//------------------------------------------------------------------------------
void Clipper::AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &Pt) {
AddOutPt(e1, Pt);
if (e2->WindDelta == 0)
AddOutPt(e2, Pt);
if (e1->OutIdx == e2->OutIdx) {
e1->OutIdx = Unassigned;
e2->OutIdx = Unassigned;
} else if (e1->OutIdx < e2->OutIdx)
AppendPolygon(e1, e2);
else
AppendPolygon(e2, e1);
}
//------------------------------------------------------------------------------
void Clipper::AddEdgeToSEL(TEdge *edge) {
// SEL pointers in PEdge are reused to build a list of horizontal edges.
// However, we don't need to worry about order with horizontal edge
// processing.
if (!m_SortedEdges) {
m_SortedEdges = edge;
edge->PrevInSEL = 0;
edge->NextInSEL = 0;
} else {
edge->NextInSEL = m_SortedEdges;
edge->PrevInSEL = 0;
m_SortedEdges->PrevInSEL = edge;
m_SortedEdges = edge;
}
}
//------------------------------------------------------------------------------
bool Clipper::PopEdgeFromSEL(TEdge *&edge) {
if (!m_SortedEdges)
return false;
edge = m_SortedEdges;
DeleteFromSEL(m_SortedEdges);
return true;
}
//------------------------------------------------------------------------------
void Clipper::CopyAELToSEL() {
TEdge *e = m_ActiveEdges;
m_SortedEdges = e;
while (e) {
e->PrevInSEL = e->PrevInAEL;
e->NextInSEL = e->NextInAEL;
e = e->NextInAEL;
}
}
//------------------------------------------------------------------------------
void Clipper::AddJoin(OutPt *op1, OutPt *op2, const IntPoint OffPt) {
Join *j = new Join;
j->OutPt1 = op1;
j->OutPt2 = op2;
j->OffPt = OffPt;
m_Joins.push_back(j);
}
//------------------------------------------------------------------------------
void Clipper::ClearJoins() {
for (JoinList::size_type i = 0; i < m_Joins.size(); i++)
delete m_Joins[i];
m_Joins.resize(0);
}
//------------------------------------------------------------------------------
void Clipper::ClearGhostJoins() {
for (JoinList::size_type i = 0; i < m_GhostJoins.size(); i++)
delete m_GhostJoins[i];
m_GhostJoins.resize(0);
}
//------------------------------------------------------------------------------
void Clipper::AddGhostJoin(OutPt *op, const IntPoint OffPt) {
Join *j = new Join;
j->OutPt1 = op;
j->OutPt2 = 0;
j->OffPt = OffPt;
m_GhostJoins.push_back(j);
}
//------------------------------------------------------------------------------
void Clipper::InsertLocalMinimaIntoAEL(const cInt botY) {
const LocalMinimum *lm;
while (PopLocalMinima(botY, lm)) {
TEdge *lb = lm->LeftBound;
TEdge *rb = lm->RightBound;
OutPt *Op1 = 0;
if (!lb) {
// nb: don't insert LB into either AEL or SEL
InsertEdgeIntoAEL(rb, 0);
SetWindingCount(*rb);
if (IsContributing(*rb))
Op1 = AddOutPt(rb, rb->Bot);
} else if (!rb) {
InsertEdgeIntoAEL(lb, 0);
SetWindingCount(*lb);
if (IsContributing(*lb))
Op1 = AddOutPt(lb, lb->Bot);
InsertScanbeam(lb->Top.Y);
} else {
InsertEdgeIntoAEL(lb, 0);
InsertEdgeIntoAEL(rb, lb);
SetWindingCount(*lb);
rb->WindCnt = lb->WindCnt;
rb->WindCnt2 = lb->WindCnt2;
if (IsContributing(*lb))
Op1 = AddLocalMinPoly(lb, rb, lb->Bot);
InsertScanbeam(lb->Top.Y);
}
if (rb) {
if (IsHorizontal(*rb)) {
AddEdgeToSEL(rb);
if (rb->NextInLML)
InsertScanbeam(rb->NextInLML->Top.Y);
} else
InsertScanbeam(rb->Top.Y);
}
if (!lb || !rb)
continue;
// if any output polygons share an edge, they'll need joining later ...
if (Op1 && IsHorizontal(*rb) && m_GhostJoins.size() > 0 &&
(rb->WindDelta != 0)) {
for (JoinList::size_type i = 0; i < m_GhostJoins.size(); ++i) {
Join *jr = m_GhostJoins[i];
// if the horizontal Rb and a 'ghost' horizontal overlap, then convert
// the 'ghost' join to a real join ready for later ...
if (HorzSegmentsOverlap(jr->OutPt1->Pt.X, jr->OffPt.X, rb->Bot.X,
rb->Top.X))
AddJoin(jr->OutPt1, Op1, jr->OffPt);
}
}
if (lb->OutIdx >= 0 && lb->PrevInAEL &&
lb->PrevInAEL->Curr.X == lb->Bot.X && lb->PrevInAEL->OutIdx >= 0 &&
SlopesEqual(lb->PrevInAEL->Bot, lb->PrevInAEL->Top, lb->Curr, lb->Top,
m_UseFullRange) &&
(lb->WindDelta != 0) && (lb->PrevInAEL->WindDelta != 0)) {
OutPt *Op2 = AddOutPt(lb->PrevInAEL, lb->Bot);
AddJoin(Op1, Op2, lb->Top);
}
if (lb->NextInAEL != rb) {
if (rb->OutIdx >= 0 && rb->PrevInAEL->OutIdx >= 0 &&
SlopesEqual(rb->PrevInAEL->Curr, rb->PrevInAEL->Top, rb->Curr,
rb->Top, m_UseFullRange) &&
(rb->WindDelta != 0) && (rb->PrevInAEL->WindDelta != 0)) {
OutPt *Op2 = AddOutPt(rb->PrevInAEL, rb->Bot);
AddJoin(Op1, Op2, rb->Top);
}
TEdge *e = lb->NextInAEL;
if (e) {
while (e != rb) {
// nb: For calculating winding counts etc, IntersectEdges() assumes
// that param1 will be to the Right of param2 ABOVE the intersection
// ...
IntersectEdges(rb, e, lb->Curr); // order important here
e = e->NextInAEL;
}
}
}
}
}
//------------------------------------------------------------------------------
void Clipper::DeleteFromSEL(TEdge *e) {
TEdge *SelPrev = e->PrevInSEL;
TEdge *SelNext = e->NextInSEL;
if (!SelPrev && !SelNext && (e != m_SortedEdges))
return; // already deleted
if (SelPrev)
SelPrev->NextInSEL = SelNext;
else
m_SortedEdges = SelNext;
if (SelNext)
SelNext->PrevInSEL = SelPrev;
e->NextInSEL = 0;
e->PrevInSEL = 0;
}
//------------------------------------------------------------------------------
#ifdef use_xyz
void Clipper::SetZ(IntPoint &pt, TEdge &e1, TEdge &e2) {
if (pt.Z != 0 || !m_ZFill)
return;
else if (pt == e1.Bot)
pt.Z = e1.Bot.Z;
else if (pt == e1.Top)
pt.Z = e1.Top.Z;
else if (pt == e2.Bot)
pt.Z = e2.Bot.Z;
else if (pt == e2.Top)
pt.Z = e2.Top.Z;
else
(*m_ZFill)(e1.Bot, e1.Top, e2.Bot, e2.Top, pt);
}
//------------------------------------------------------------------------------
#endif
void Clipper::IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &Pt) {
bool e1Contributing = (e1->OutIdx >= 0);
bool e2Contributing = (e2->OutIdx >= 0);
#ifdef use_xyz
SetZ(Pt, *e1, *e2);
#endif
#ifdef use_lines
// if either edge is on an OPEN path ...
if (e1->WindDelta == 0 || e2->WindDelta == 0) {
// ignore subject-subject open path intersections UNLESS they
// are both open paths, AND they are both 'contributing maximas' ...
if (e1->WindDelta == 0 && e2->WindDelta == 0)
return;
// if intersecting a subj line with a subj poly ...
else if (e1->PolyTyp == e2->PolyTyp && e1->WindDelta != e2->WindDelta &&
m_ClipType == ctUnion) {
if (e1->WindDelta == 0) {
if (e2Contributing) {
AddOutPt(e1, Pt);
if (e1Contributing)
e1->OutIdx = Unassigned;
}
} else {
if (e1Contributing) {
AddOutPt(e2, Pt);
if (e2Contributing)
e2->OutIdx = Unassigned;
}
}
} else if (e1->PolyTyp != e2->PolyTyp) {
// toggle subj open path OutIdx on/off when Abs(clip.WndCnt) == 1 ...
if ((e1->WindDelta == 0) && abs(e2->WindCnt) == 1 &&
(m_ClipType != ctUnion || e2->WindCnt2 == 0)) {
AddOutPt(e1, Pt);
if (e1Contributing)
e1->OutIdx = Unassigned;
} else if ((e2->WindDelta == 0) && (abs(e1->WindCnt) == 1) &&
(m_ClipType != ctUnion || e1->WindCnt2 == 0)) {
AddOutPt(e2, Pt);
if (e2Contributing)
e2->OutIdx = Unassigned;
}
}
return;
}
#endif
// update winding counts...
// assumes that e1 will be to the Right of e2 ABOVE the intersection
if (e1->PolyTyp == e2->PolyTyp) {
if (IsEvenOddFillType(*e1)) {
int oldE1WindCnt = e1->WindCnt;
e1->WindCnt = e2->WindCnt;
e2->WindCnt = oldE1WindCnt;
} else {
if (e1->WindCnt + e2->WindDelta == 0)
e1->WindCnt = -e1->WindCnt;
else
e1->WindCnt += e2->WindDelta;
if (e2->WindCnt - e1->WindDelta == 0)
e2->WindCnt = -e2->WindCnt;
else
e2->WindCnt -= e1->WindDelta;
}
} else {
if (!IsEvenOddFillType(*e2))
e1->WindCnt2 += e2->WindDelta;
else
e1->WindCnt2 = (e1->WindCnt2 == 0) ? 1 : 0;
if (!IsEvenOddFillType(*e1))
e2->WindCnt2 -= e1->WindDelta;
else
e2->WindCnt2 = (e2->WindCnt2 == 0) ? 1 : 0;
}
PolyFillType e1FillType, e2FillType, e1FillType2, e2FillType2;
if (e1->PolyTyp == ptSubject) {
e1FillType = m_SubjFillType;
e1FillType2 = m_ClipFillType;
} else {
e1FillType = m_ClipFillType;
e1FillType2 = m_SubjFillType;
}
if (e2->PolyTyp == ptSubject) {
e2FillType = m_SubjFillType;
e2FillType2 = m_ClipFillType;
} else {
e2FillType = m_ClipFillType;
e2FillType2 = m_SubjFillType;
}
cInt e1Wc, e2Wc;
switch (e1FillType) {
case pftPositive:
e1Wc = e1->WindCnt;
break;
case pftNegative:
e1Wc = -e1->WindCnt;
break;
default:
e1Wc = Abs(e1->WindCnt);
}
switch (e2FillType) {
case pftPositive:
e2Wc = e2->WindCnt;
break;
case pftNegative:
e2Wc = -e2->WindCnt;
break;
default:
e2Wc = Abs(e2->WindCnt);
}
if (e1Contributing && e2Contributing) {
if ((e1Wc != 0 && e1Wc != 1) || (e2Wc != 0 && e2Wc != 1) ||
(e1->PolyTyp != e2->PolyTyp && m_ClipType != ctXor)) {
AddLocalMaxPoly(e1, e2, Pt);
} else {
AddOutPt(e1, Pt);
AddOutPt(e2, Pt);
SwapSides(*e1, *e2);
SwapPolyIndexes(*e1, *e2);
}
} else if (e1Contributing) {
if (e2Wc == 0 || e2Wc == 1) {
AddOutPt(e1, Pt);
SwapSides(*e1, *e2);
SwapPolyIndexes(*e1, *e2);
}
} else if (e2Contributing) {
if (e1Wc == 0 || e1Wc == 1) {
AddOutPt(e2, Pt);
SwapSides(*e1, *e2);
SwapPolyIndexes(*e1, *e2);
}
} else if ((e1Wc == 0 || e1Wc == 1) && (e2Wc == 0 || e2Wc == 1)) {
// neither edge is currently contributing ...
cInt e1Wc2, e2Wc2;
switch (e1FillType2) {
case pftPositive:
e1Wc2 = e1->WindCnt2;
break;
case pftNegative:
e1Wc2 = -e1->WindCnt2;
break;
default:
e1Wc2 = Abs(e1->WindCnt2);
}
switch (e2FillType2) {
case pftPositive:
e2Wc2 = e2->WindCnt2;
break;
case pftNegative:
e2Wc2 = -e2->WindCnt2;
break;
default:
e2Wc2 = Abs(e2->WindCnt2);
}
if (e1->PolyTyp != e2->PolyTyp) {
AddLocalMinPoly(e1, e2, Pt);
} else if (e1Wc == 1 && e2Wc == 1)
switch (m_ClipType) {
case ctIntersection:
if (e1Wc2 > 0 && e2Wc2 > 0)
AddLocalMinPoly(e1, e2, Pt);
break;
case ctUnion:
if (e1Wc2 <= 0 && e2Wc2 <= 0)
AddLocalMinPoly(e1, e2, Pt);
break;
case ctDifference:
if (((e1->PolyTyp == ptClip) && (e1Wc2 > 0) && (e2Wc2 > 0)) ||
((e1->PolyTyp == ptSubject) && (e1Wc2 <= 0) && (e2Wc2 <= 0)))
AddLocalMinPoly(e1, e2, Pt);
break;
case ctXor:
AddLocalMinPoly(e1, e2, Pt);
}
else
SwapSides(*e1, *e2);
}
}
//------------------------------------------------------------------------------
void Clipper::SetHoleState(TEdge *e, OutRec *outrec) {
TEdge *e2 = e->PrevInAEL;
TEdge *eTmp = 0;
while (e2) {
if (e2->OutIdx >= 0 && e2->WindDelta != 0) {
if (!eTmp)
eTmp = e2;
else if (eTmp->OutIdx == e2->OutIdx)
eTmp = 0;
}
e2 = e2->PrevInAEL;
}
if (!eTmp) {
outrec->FirstLeft = 0;
outrec->IsHole = false;
} else {
outrec->FirstLeft = m_PolyOuts[eTmp->OutIdx];
outrec->IsHole = !outrec->FirstLeft->IsHole;
}
}
//------------------------------------------------------------------------------
OutRec *GetLowermostRec(OutRec *outRec1, OutRec *outRec2) {
// work out which polygon fragment has the correct hole state ...
if (!outRec1->BottomPt)
outRec1->BottomPt = GetBottomPt(outRec1->Pts);
if (!outRec2->BottomPt)
outRec2->BottomPt = GetBottomPt(outRec2->Pts);
OutPt *OutPt1 = outRec1->BottomPt;
OutPt *OutPt2 = outRec2->BottomPt;
if (OutPt1->Pt.Y > OutPt2->Pt.Y)
return outRec1;
else if (OutPt1->Pt.Y < OutPt2->Pt.Y)
return outRec2;
else if (OutPt1->Pt.X < OutPt2->Pt.X)
return outRec1;
else if (OutPt1->Pt.X > OutPt2->Pt.X)
return outRec2;
else if (OutPt1->Next == OutPt1)
return outRec2;
else if (OutPt2->Next == OutPt2)
return outRec1;
else if (FirstIsBottomPt(OutPt1, OutPt2))
return outRec1;
else
return outRec2;
}
//------------------------------------------------------------------------------
bool OutRec1RightOfOutRec2(OutRec *outRec1, OutRec *outRec2) {
do {
outRec1 = outRec1->FirstLeft;
if (outRec1 == outRec2)
return true;
} while (outRec1);
return false;
}
//------------------------------------------------------------------------------
OutRec *Clipper::GetOutRec(int Idx) {
OutRec *outrec = m_PolyOuts[Idx];
while (outrec != m_PolyOuts[outrec->Idx])
outrec = m_PolyOuts[outrec->Idx];
return outrec;
}
//------------------------------------------------------------------------------
void Clipper::AppendPolygon(TEdge *e1, TEdge *e2) {
// get the start and ends of both output polygons ...
OutRec *outRec1 = m_PolyOuts[e1->OutIdx];
OutRec *outRec2 = m_PolyOuts[e2->OutIdx];
OutRec *holeStateRec;
if (OutRec1RightOfOutRec2(outRec1, outRec2))
holeStateRec = outRec2;
else if (OutRec1RightOfOutRec2(outRec2, outRec1))
holeStateRec = outRec1;
else
holeStateRec = GetLowermostRec(outRec1, outRec2);
// get the start and ends of both output polygons and
// join e2 poly onto e1 poly and delete pointers to e2 ...
OutPt *p1_lft = outRec1->Pts;
OutPt *p1_rt = p1_lft->Prev;
OutPt *p2_lft = outRec2->Pts;
OutPt *p2_rt = p2_lft->Prev;
// join e2 poly onto e1 poly and delete pointers to e2 ...
if (e1->Side == esLeft) {
if (e2->Side == esLeft) {
// z y x a b c
ReversePolyPtLinks(p2_lft);
p2_lft->Next = p1_lft;
p1_lft->Prev = p2_lft;
p1_rt->Next = p2_rt;
p2_rt->Prev = p1_rt;
outRec1->Pts = p2_rt;
} else {
// x y z a b c
p2_rt->Next = p1_lft;
p1_lft->Prev = p2_rt;
p2_lft->Prev = p1_rt;
p1_rt->Next = p2_lft;
outRec1->Pts = p2_lft;
}
} else {
if (e2->Side == esRight) {
// a b c z y x
ReversePolyPtLinks(p2_lft);
p1_rt->Next = p2_rt;
p2_rt->Prev = p1_rt;
p2_lft->Next = p1_lft;
p1_lft->Prev = p2_lft;
} else {
// a b c x y z
p1_rt->Next = p2_lft;
p2_lft->Prev = p1_rt;
p1_lft->Prev = p2_rt;
p2_rt->Next = p1_lft;
}
}
outRec1->BottomPt = 0;
if (holeStateRec == outRec2) {
if (outRec2->FirstLeft != outRec1)
outRec1->FirstLeft = outRec2->FirstLeft;
outRec1->IsHole = outRec2->IsHole;
}
outRec2->Pts = 0;
outRec2->BottomPt = 0;
outRec2->FirstLeft = outRec1;
int OKIdx = e1->OutIdx;
int ObsoleteIdx = e2->OutIdx;
e1->OutIdx =
Unassigned; // nb: safe because we only get here via AddLocalMaxPoly
e2->OutIdx = Unassigned;
TEdge *e = m_ActiveEdges;
while (e) {
if (e->OutIdx == ObsoleteIdx) {
e->OutIdx = OKIdx;
e->Side = e1->Side;
break;
}
e = e->NextInAEL;
}
outRec2->Idx = outRec1->Idx;
}
//------------------------------------------------------------------------------
OutPt *Clipper::AddOutPt(TEdge *e, const IntPoint &pt) {
if (e->OutIdx < 0) {
OutRec *outRec = CreateOutRec();
outRec->IsOpen = (e->WindDelta == 0);
OutPt *newOp = new OutPt;
outRec->Pts = newOp;
newOp->Idx = outRec->Idx;
newOp->Pt = pt;
newOp->Next = newOp;
newOp->Prev = newOp;
if (!outRec->IsOpen)
SetHoleState(e, outRec);
e->OutIdx = outRec->Idx;
return newOp;
} else {
OutRec *outRec = m_PolyOuts[e->OutIdx];
// OutRec.Pts is the 'Left-most' point & OutRec.Pts.Prev is the 'Right-most'
OutPt *op = outRec->Pts;
bool ToFront = (e->Side == esLeft);
if (ToFront && (pt == op->Pt))
return op;
else if (!ToFront && (pt == op->Prev->Pt))
return op->Prev;
OutPt *newOp = new OutPt;
newOp->Idx = outRec->Idx;
newOp->Pt = pt;
newOp->Next = op;
newOp->Prev = op->Prev;
newOp->Prev->Next = newOp;
op->Prev = newOp;
if (ToFront)
outRec->Pts = newOp;
return newOp;
}
}
//------------------------------------------------------------------------------
OutPt *Clipper::GetLastOutPt(TEdge *e) {
OutRec *outRec = m_PolyOuts[e->OutIdx];
if (e->Side == esLeft)
return outRec->Pts;
else
return outRec->Pts->Prev;
}
//------------------------------------------------------------------------------
void Clipper::ProcessHorizontals() {
TEdge *horzEdge;
while (PopEdgeFromSEL(horzEdge))
ProcessHorizontal(horzEdge);
}
//------------------------------------------------------------------------------
inline bool IsMinima(TEdge *e) {
return e && (e->Prev->NextInLML != e) && (e->Next->NextInLML != e);
}
//------------------------------------------------------------------------------
inline bool IsMaxima(TEdge *e, const cInt Y) {
return e && e->Top.Y == Y && !e->NextInLML;
}
//------------------------------------------------------------------------------
inline bool IsIntermediate(TEdge *e, const cInt Y) {
return e->Top.Y == Y && e->NextInLML;
}
//------------------------------------------------------------------------------
TEdge *GetMaximaPair(TEdge *e) {
if ((e->Next->Top == e->Top) && !e->Next->NextInLML)
return e->Next;
else if ((e->Prev->Top == e->Top) && !e->Prev->NextInLML)
return e->Prev;
else
return 0;
}
//------------------------------------------------------------------------------
TEdge *GetMaximaPairEx(TEdge *e) {
// as GetMaximaPair() but returns 0 if MaxPair isn't in AEL (unless it's
// horizontal)
TEdge *result = GetMaximaPair(e);
if (result &&
(result->OutIdx == Skip ||
(result->NextInAEL == result->PrevInAEL && !IsHorizontal(*result))))
return 0;
return result;
}
//------------------------------------------------------------------------------
void Clipper::SwapPositionsInSEL(TEdge *Edge1, TEdge *Edge2) {
if (!(Edge1->NextInSEL) && !(Edge1->PrevInSEL))
return;
if (!(Edge2->NextInSEL) && !(Edge2->PrevInSEL))
return;
if (Edge1->NextInSEL == Edge2) {
TEdge *Next = Edge2->NextInSEL;
if (Next)
Next->PrevInSEL = Edge1;
TEdge *Prev = Edge1->PrevInSEL;
if (Prev)
Prev->NextInSEL = Edge2;
Edge2->PrevInSEL = Prev;
Edge2->NextInSEL = Edge1;
Edge1->PrevInSEL = Edge2;
Edge1->NextInSEL = Next;
} else if (Edge2->NextInSEL == Edge1) {
TEdge *Next = Edge1->NextInSEL;
if (Next)
Next->PrevInSEL = Edge2;
TEdge *Prev = Edge2->PrevInSEL;
if (Prev)
Prev->NextInSEL = Edge1;
Edge1->PrevInSEL = Prev;
Edge1->NextInSEL = Edge2;
Edge2->PrevInSEL = Edge1;
Edge2->NextInSEL = Next;
} else {
TEdge *Next = Edge1->NextInSEL;
TEdge *Prev = Edge1->PrevInSEL;
Edge1->NextInSEL = Edge2->NextInSEL;
if (Edge1->NextInSEL)
Edge1->NextInSEL->PrevInSEL = Edge1;
Edge1->PrevInSEL = Edge2->PrevInSEL;
if (Edge1->PrevInSEL)
Edge1->PrevInSEL->NextInSEL = Edge1;
Edge2->NextInSEL = Next;
if (Edge2->NextInSEL)
Edge2->NextInSEL->PrevInSEL = Edge2;
Edge2->PrevInSEL = Prev;
if (Edge2->PrevInSEL)
Edge2->PrevInSEL->NextInSEL = Edge2;
}
if (!Edge1->PrevInSEL)
m_SortedEdges = Edge1;
else if (!Edge2->PrevInSEL)
m_SortedEdges = Edge2;
}
//------------------------------------------------------------------------------
TEdge *GetNextInAEL(TEdge *e, Direction dir) {
return dir == dLeftToRight ? e->NextInAEL : e->PrevInAEL;
}
//------------------------------------------------------------------------------
void GetHorzDirection(TEdge &HorzEdge, Direction &Dir, cInt &Left,
cInt &Right) {
if (HorzEdge.Bot.X < HorzEdge.Top.X) {
Left = HorzEdge.Bot.X;
Right = HorzEdge.Top.X;
Dir = dLeftToRight;
} else {
Left = HorzEdge.Top.X;
Right = HorzEdge.Bot.X;
Dir = dRightToLeft;
}
}
//------------------------------------------------------------------------
/*******************************************************************************
* Notes: Horizontal edges (HEs) at scanline intersections (ie at the Top or *
* Bottom of a scanbeam) are processed as if layered. The order in which HEs *
* are processed doesn't matter. HEs intersect with other HE Bot.Xs only [#] *
* (or they could intersect with Top.Xs only, ie EITHER Bot.Xs OR Top.Xs), *
* and with other non-horizontal edges [*]. Once these intersections are *
* processed, intermediate HEs then 'promote' the Edge above (NextInLML) into *
* the AEL. These 'promoted' edges may in turn intersect [%] with other HEs. *
*******************************************************************************/
void Clipper::ProcessHorizontal(TEdge *horzEdge) {
Direction dir;
cInt horzLeft, horzRight;
bool IsOpen = (horzEdge->WindDelta == 0);
GetHorzDirection(*horzEdge, dir, horzLeft, horzRight);
TEdge *eLastHorz = horzEdge, *eMaxPair = 0;
while (eLastHorz->NextInLML && IsHorizontal(*eLastHorz->NextInLML))
eLastHorz = eLastHorz->NextInLML;
if (!eLastHorz->NextInLML)
eMaxPair = GetMaximaPair(eLastHorz);
MaximaList::const_iterator maxIt;
MaximaList::const_reverse_iterator maxRit;
if (m_Maxima.size() > 0) {
// get the first maxima in range (X) ...
if (dir == dLeftToRight) {
maxIt = m_Maxima.begin();
while (maxIt != m_Maxima.end() && *maxIt <= horzEdge->Bot.X)
maxIt++;
if (maxIt != m_Maxima.end() && *maxIt >= eLastHorz->Top.X)
maxIt = m_Maxima.end();
} else {
maxRit = m_Maxima.rbegin();
while (maxRit != m_Maxima.rend() && *maxRit > horzEdge->Bot.X)
maxRit++;
if (maxRit != m_Maxima.rend() && *maxRit <= eLastHorz->Top.X)
maxRit = m_Maxima.rend();
}
}
OutPt *op1 = 0;
for (;;) // loop through consec. horizontal edges
{
bool IsLastHorz = (horzEdge == eLastHorz);
TEdge *e = GetNextInAEL(horzEdge, dir);
while (e) {
// this code block inserts extra coords into horizontal edges (in output
// polygons) whereever maxima touch these horizontal edges. This helps
//'simplifying' polygons (ie if the Simplify property is set).
if (m_Maxima.size() > 0) {
if (dir == dLeftToRight) {
while (maxIt != m_Maxima.end() && *maxIt < e->Curr.X) {
if (horzEdge->OutIdx >= 0 && !IsOpen)
AddOutPt(horzEdge, IntPoint(*maxIt, horzEdge->Bot.Y));
maxIt++;
}
} else {
while (maxRit != m_Maxima.rend() && *maxRit > e->Curr.X) {
if (horzEdge->OutIdx >= 0 && !IsOpen)
AddOutPt(horzEdge, IntPoint(*maxRit, horzEdge->Bot.Y));
maxRit++;
}
}
};
if ((dir == dLeftToRight && e->Curr.X > horzRight) ||
(dir == dRightToLeft && e->Curr.X < horzLeft))
break;
// Also break if we've got to the end of an intermediate horizontal edge
// ...
// nb: Smaller Dx's are to the right of larger Dx's ABOVE the horizontal.
if (e->Curr.X == horzEdge->Top.X && horzEdge->NextInLML &&
e->Dx < horzEdge->NextInLML->Dx)
break;
if (horzEdge->OutIdx >= 0 && !IsOpen) // note: may be done multiple times
{
#ifdef use_xyz
if (dir == dLeftToRight)
SetZ(e->Curr, *horzEdge, *e);
else
SetZ(e->Curr, *e, *horzEdge);
#endif
op1 = AddOutPt(horzEdge, e->Curr);
TEdge *eNextHorz = m_SortedEdges;
while (eNextHorz) {
if (eNextHorz->OutIdx >= 0 &&
HorzSegmentsOverlap(horzEdge->Bot.X, horzEdge->Top.X,
eNextHorz->Bot.X, eNextHorz->Top.X)) {
OutPt *op2 = GetLastOutPt(eNextHorz);
AddJoin(op2, op1, eNextHorz->Top);
}
eNextHorz = eNextHorz->NextInSEL;
}
AddGhostJoin(op1, horzEdge->Bot);
}
// OK, so far we're still in range of the horizontal Edge but make sure
// we're at the last of consec. horizontals when matching with eMaxPair
if (e == eMaxPair && IsLastHorz) {
if (horzEdge->OutIdx >= 0)
AddLocalMaxPoly(horzEdge, eMaxPair, horzEdge->Top);
DeleteFromAEL(horzEdge);
DeleteFromAEL(eMaxPair);
return;
}
if (dir == dLeftToRight) {
IntPoint Pt = IntPoint(e->Curr.X, horzEdge->Curr.Y);
IntersectEdges(horzEdge, e, Pt);
} else {
IntPoint Pt = IntPoint(e->Curr.X, horzEdge->Curr.Y);
IntersectEdges(e, horzEdge, Pt);
}
TEdge *eNext = GetNextInAEL(e, dir);
SwapPositionsInAEL(horzEdge, e);
e = eNext;
} // end while(e)
// Break out of loop if HorzEdge.NextInLML is not also horizontal ...
if (!horzEdge->NextInLML || !IsHorizontal(*horzEdge->NextInLML))
break;
UpdateEdgeIntoAEL(horzEdge);
if (horzEdge->OutIdx >= 0)
AddOutPt(horzEdge, horzEdge->Bot);
GetHorzDirection(*horzEdge, dir, horzLeft, horzRight);
} // end for (;;)
if (horzEdge->OutIdx >= 0 && !op1) {
op1 = GetLastOutPt(horzEdge);
TEdge *eNextHorz = m_SortedEdges;
while (eNextHorz) {
if (eNextHorz->OutIdx >= 0 &&
HorzSegmentsOverlap(horzEdge->Bot.X, horzEdge->Top.X,
eNextHorz->Bot.X, eNextHorz->Top.X)) {
OutPt *op2 = GetLastOutPt(eNextHorz);
AddJoin(op2, op1, eNextHorz->Top);
}
eNextHorz = eNextHorz->NextInSEL;
}
AddGhostJoin(op1, horzEdge->Top);
}
if (horzEdge->NextInLML) {
if (horzEdge->OutIdx >= 0) {
op1 = AddOutPt(horzEdge, horzEdge->Top);
UpdateEdgeIntoAEL(horzEdge);
if (horzEdge->WindDelta == 0)
return;
// nb: HorzEdge is no longer horizontal here
TEdge *ePrev = horzEdge->PrevInAEL;
TEdge *eNext = horzEdge->NextInAEL;
if (ePrev && ePrev->Curr.X == horzEdge->Bot.X &&
ePrev->Curr.Y == horzEdge->Bot.Y && ePrev->WindDelta != 0 &&
(ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y &&
SlopesEqual(*horzEdge, *ePrev, m_UseFullRange))) {
OutPt *op2 = AddOutPt(ePrev, horzEdge->Bot);
AddJoin(op1, op2, horzEdge->Top);
} else if (eNext && eNext->Curr.X == horzEdge->Bot.X &&
eNext->Curr.Y == horzEdge->Bot.Y && eNext->WindDelta != 0 &&
eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y &&
SlopesEqual(*horzEdge, *eNext, m_UseFullRange)) {
OutPt *op2 = AddOutPt(eNext, horzEdge->Bot);
AddJoin(op1, op2, horzEdge->Top);
}
} else
UpdateEdgeIntoAEL(horzEdge);
} else {
if (horzEdge->OutIdx >= 0)
AddOutPt(horzEdge, horzEdge->Top);
DeleteFromAEL(horzEdge);
}
}
//------------------------------------------------------------------------------
bool Clipper::ProcessIntersections(const cInt topY) {
if (!m_ActiveEdges)
return true;
try {
BuildIntersectList(topY);
size_t IlSize = m_IntersectList.size();
if (IlSize == 0)
return true;
if (IlSize == 1 || FixupIntersectionOrder())
ProcessIntersectList();
else
return false;
} catch (...) {
m_SortedEdges = 0;
DisposeIntersectNodes();
throw clipperException("ProcessIntersections error");
}
m_SortedEdges = 0;
return true;
}
//------------------------------------------------------------------------------
void Clipper::DisposeIntersectNodes() {
for (size_t i = 0; i < m_IntersectList.size(); ++i)
delete m_IntersectList[i];
m_IntersectList.clear();
}
//------------------------------------------------------------------------------
void Clipper::BuildIntersectList(const cInt topY) {
if (!m_ActiveEdges)
return;
// prepare for sorting ...
TEdge *e = m_ActiveEdges;
m_SortedEdges = e;
while (e) {
e->PrevInSEL = e->PrevInAEL;
e->NextInSEL = e->NextInAEL;
e->Curr.X = TopX(*e, topY);
e = e->NextInAEL;
}
// bubblesort ...
bool isModified;
do {
isModified = false;
e = m_SortedEdges;
while (e->NextInSEL) {
TEdge *eNext = e->NextInSEL;
IntPoint Pt;
if (e->Curr.X > eNext->Curr.X) {
IntersectPoint(*e, *eNext, Pt);
if (Pt.Y < topY)
Pt = IntPoint(TopX(*e, topY), topY);
IntersectNode *newNode = new IntersectNode;
newNode->Edge1 = e;
newNode->Edge2 = eNext;
newNode->Pt = Pt;
m_IntersectList.push_back(newNode);
SwapPositionsInSEL(e, eNext);
isModified = true;
} else
e = eNext;
}
if (e->PrevInSEL)
e->PrevInSEL->NextInSEL = 0;
else
break;
} while (isModified);
m_SortedEdges = 0; // important
}
//------------------------------------------------------------------------------
void Clipper::ProcessIntersectList() {
for (size_t i = 0; i < m_IntersectList.size(); ++i) {
IntersectNode *iNode = m_IntersectList[i];
{
IntersectEdges(iNode->Edge1, iNode->Edge2, iNode->Pt);
SwapPositionsInAEL(iNode->Edge1, iNode->Edge2);
}
delete iNode;
}
m_IntersectList.clear();
}
//------------------------------------------------------------------------------
bool IntersectListSort(IntersectNode *node1, IntersectNode *node2) {
return node2->Pt.Y < node1->Pt.Y;
}
//------------------------------------------------------------------------------
inline bool EdgesAdjacent(const IntersectNode &inode) {
return (inode.Edge1->NextInSEL == inode.Edge2) ||
(inode.Edge1->PrevInSEL == inode.Edge2);
}
//------------------------------------------------------------------------------
bool Clipper::FixupIntersectionOrder() {
// pre-condition: intersections are sorted Bottom-most first.
// Now it's crucial that intersections are made only between adjacent edges,
// so to ensure this the order of intersections may need adjusting ...
CopyAELToSEL();
std::sort(m_IntersectList.begin(), m_IntersectList.end(), IntersectListSort);
size_t cnt = m_IntersectList.size();
for (size_t i = 0; i < cnt; ++i) {
if (!EdgesAdjacent(*m_IntersectList[i])) {
size_t j = i + 1;
while (j < cnt && !EdgesAdjacent(*m_IntersectList[j]))
j++;
if (j == cnt)
return false;
std::swap(m_IntersectList[i], m_IntersectList[j]);
}
SwapPositionsInSEL(m_IntersectList[i]->Edge1, m_IntersectList[i]->Edge2);
}
return true;
}
//------------------------------------------------------------------------------
void Clipper::DoMaxima(TEdge *e) {
TEdge *eMaxPair = GetMaximaPairEx(e);
if (!eMaxPair) {
if (e->OutIdx >= 0)
AddOutPt(e, e->Top);
DeleteFromAEL(e);
return;
}
TEdge *eNext = e->NextInAEL;
while (eNext && eNext != eMaxPair) {
IntersectEdges(e, eNext, e->Top);
SwapPositionsInAEL(e, eNext);
eNext = e->NextInAEL;
}
if (e->OutIdx == Unassigned && eMaxPair->OutIdx == Unassigned) {
DeleteFromAEL(e);
DeleteFromAEL(eMaxPair);
} else if (e->OutIdx >= 0 && eMaxPair->OutIdx >= 0) {
if (e->OutIdx >= 0)
AddLocalMaxPoly(e, eMaxPair, e->Top);
DeleteFromAEL(e);
DeleteFromAEL(eMaxPair);
}
#ifdef use_lines
else if (e->WindDelta == 0) {
if (e->OutIdx >= 0) {
AddOutPt(e, e->Top);
e->OutIdx = Unassigned;
}
DeleteFromAEL(e);
if (eMaxPair->OutIdx >= 0) {
AddOutPt(eMaxPair, e->Top);
eMaxPair->OutIdx = Unassigned;
}
DeleteFromAEL(eMaxPair);
}
#endif
else
throw clipperException("DoMaxima error");
}
//------------------------------------------------------------------------------
void Clipper::ProcessEdgesAtTopOfScanbeam(const cInt topY) {
TEdge *e = m_ActiveEdges;
while (e) {
// 1. process maxima, treating them as if they're 'bent' horizontal edges,
// but exclude maxima with horizontal edges. nb: e can't be a horizontal.
bool IsMaximaEdge = IsMaxima(e, topY);
if (IsMaximaEdge) {
TEdge *eMaxPair = GetMaximaPairEx(e);
IsMaximaEdge = (!eMaxPair || !IsHorizontal(*eMaxPair));
}
if (IsMaximaEdge) {
if (m_StrictSimple)
m_Maxima.push_back(e->Top.X);
TEdge *ePrev = e->PrevInAEL;
DoMaxima(e);
if (!ePrev)
e = m_ActiveEdges;
else
e = ePrev->NextInAEL;
} else {
// 2. promote horizontal edges, otherwise update Curr.X and Curr.Y ...
if (IsIntermediate(e, topY) && IsHorizontal(*e->NextInLML)) {
UpdateEdgeIntoAEL(e);
if (e->OutIdx >= 0)
AddOutPt(e, e->Bot);
AddEdgeToSEL(e);
} else {
e->Curr.X = TopX(*e, topY);
e->Curr.Y = topY;
#ifdef use_xyz
e->Curr.Z =
topY == e->Top.Y ? e->Top.Z : (topY == e->Bot.Y ? e->Bot.Z : 0);
#endif
}
// When StrictlySimple and 'e' is being touched by another edge, then
// make sure both edges have a vertex here ...
if (m_StrictSimple) {
TEdge *ePrev = e->PrevInAEL;
if ((e->OutIdx >= 0) && (e->WindDelta != 0) && ePrev &&
(ePrev->OutIdx >= 0) && (ePrev->Curr.X == e->Curr.X) &&
(ePrev->WindDelta != 0)) {
IntPoint pt = e->Curr;
#ifdef use_xyz
SetZ(pt, *ePrev, *e);
#endif
OutPt *op = AddOutPt(ePrev, pt);
OutPt *op2 = AddOutPt(e, pt);
AddJoin(op, op2, pt); // StrictlySimple (type-3) join
}
}
e = e->NextInAEL;
}
}
// 3. Process horizontals at the Top of the scanbeam ...
m_Maxima.sort();
ProcessHorizontals();
m_Maxima.clear();
// 4. Promote intermediate vertices ...
e = m_ActiveEdges;
while (e) {
if (IsIntermediate(e, topY)) {
OutPt *op = 0;
if (e->OutIdx >= 0)
op = AddOutPt(e, e->Top);
UpdateEdgeIntoAEL(e);
// if output polygons share an edge, they'll need joining later ...
TEdge *ePrev = e->PrevInAEL;
TEdge *eNext = e->NextInAEL;
if (ePrev && ePrev->Curr.X == e->Bot.X && ePrev->Curr.Y == e->Bot.Y &&
op && ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y &&
SlopesEqual(e->Curr, e->Top, ePrev->Curr, ePrev->Top,
m_UseFullRange) &&
(e->WindDelta != 0) && (ePrev->WindDelta != 0)) {
OutPt *op2 = AddOutPt(ePrev, e->Bot);
AddJoin(op, op2, e->Top);
} else if (eNext && eNext->Curr.X == e->Bot.X &&
eNext->Curr.Y == e->Bot.Y && op && eNext->OutIdx >= 0 &&
eNext->Curr.Y > eNext->Top.Y &&
SlopesEqual(e->Curr, e->Top, eNext->Curr, eNext->Top,
m_UseFullRange) &&
(e->WindDelta != 0) && (eNext->WindDelta != 0)) {
OutPt *op2 = AddOutPt(eNext, e->Bot);
AddJoin(op, op2, e->Top);
}
}
e = e->NextInAEL;
}
}
//------------------------------------------------------------------------------
void Clipper::FixupOutPolyline(OutRec &outrec) {
OutPt *pp = outrec.Pts;
OutPt *lastPP = pp->Prev;
while (pp != lastPP) {
pp = pp->Next;
if (pp->Pt == pp->Prev->Pt) {
if (pp == lastPP)
lastPP = pp->Prev;
OutPt *tmpPP = pp->Prev;
tmpPP->Next = pp->Next;
pp->Next->Prev = tmpPP;
delete pp;
pp = tmpPP;
}
}
if (pp == pp->Prev) {
DisposeOutPts(pp);
outrec.Pts = 0;
return;
}
}
//------------------------------------------------------------------------------
void Clipper::FixupOutPolygon(OutRec &outrec) {
// FixupOutPolygon() - removes duplicate points and simplifies consecutive
// parallel edges by removing the middle vertex.
OutPt *lastOK = 0;
outrec.BottomPt = 0;
OutPt *pp = outrec.Pts;
bool preserveCol = m_PreserveCollinear || m_StrictSimple;
for (;;) {
if (pp->Prev == pp || pp->Prev == pp->Next) {
DisposeOutPts(pp);
outrec.Pts = 0;
return;
}
// test for duplicate points and collinear edges ...
if ((pp->Pt == pp->Next->Pt) || (pp->Pt == pp->Prev->Pt) ||
(SlopesEqual(pp->Prev->Pt, pp->Pt, pp->Next->Pt, m_UseFullRange) &&
(!preserveCol ||
!Pt2IsBetweenPt1AndPt3(pp->Prev->Pt, pp->Pt, pp->Next->Pt)))) {
lastOK = 0;
OutPt *tmp = pp;
pp->Prev->Next = pp->Next;
pp->Next->Prev = pp->Prev;
pp = pp->Prev;
delete tmp;
} else if (pp == lastOK)
break;
else {
if (!lastOK)
lastOK = pp;
pp = pp->Next;
}
}
outrec.Pts = pp;
}
//------------------------------------------------------------------------------
int PointCount(OutPt *Pts) {
if (!Pts)
return 0;
int result = 0;
OutPt *p = Pts;
do {
result++;
p = p->Next;
} while (p != Pts);
return result;
}
//------------------------------------------------------------------------------
void Clipper::BuildResult(Paths &polys) {
polys.reserve(m_PolyOuts.size());
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) {
if (!m_PolyOuts[i]->Pts)
continue;
Path pg;
OutPt *p = m_PolyOuts[i]->Pts->Prev;
int cnt = PointCount(p);
if (cnt < 2)
continue;
pg.reserve(cnt);
for (int i = 0; i < cnt; ++i) {
pg.push_back(p->Pt);
p = p->Prev;
}
polys.push_back(pg);
}
}
//------------------------------------------------------------------------------
void Clipper::BuildResult2(PolyTree &polytree) {
polytree.Clear();
polytree.AllNodes.reserve(m_PolyOuts.size());
// add each output polygon/contour to polytree ...
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++) {
OutRec *outRec = m_PolyOuts[i];
int cnt = PointCount(outRec->Pts);
if ((outRec->IsOpen && cnt < 2) || (!outRec->IsOpen && cnt < 3))
continue;
FixHoleLinkage(*outRec);
PolyNode *pn = new PolyNode();
// nb: polytree takes ownership of all the PolyNodes
polytree.AllNodes.push_back(pn);
outRec->PolyNd = pn;
pn->Parent = 0;
pn->Index = 0;
pn->Contour.reserve(cnt);
OutPt *op = outRec->Pts->Prev;
for (int j = 0; j < cnt; j++) {
pn->Contour.push_back(op->Pt);
op = op->Prev;
}
}
// fixup PolyNode links etc ...
polytree.Childs.reserve(m_PolyOuts.size());
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++) {
OutRec *outRec = m_PolyOuts[i];
if (!outRec->PolyNd)
continue;
if (outRec->IsOpen) {
outRec->PolyNd->m_IsOpen = true;
polytree.AddChild(*outRec->PolyNd);
} else if (outRec->FirstLeft && outRec->FirstLeft->PolyNd)
outRec->FirstLeft->PolyNd->AddChild(*outRec->PolyNd);
else
polytree.AddChild(*outRec->PolyNd);
}
}
//------------------------------------------------------------------------------
void SwapIntersectNodes(IntersectNode &int1, IntersectNode &int2) {
// just swap the contents (because fIntersectNodes is a single-linked-list)
IntersectNode inode = int1; // gets a copy of Int1
int1.Edge1 = int2.Edge1;
int1.Edge2 = int2.Edge2;
int1.Pt = int2.Pt;
int2.Edge1 = inode.Edge1;
int2.Edge2 = inode.Edge2;
int2.Pt = inode.Pt;
}
//------------------------------------------------------------------------------
inline bool E2InsertsBeforeE1(TEdge &e1, TEdge &e2) {
if (e2.Curr.X == e1.Curr.X) {
if (e2.Top.Y > e1.Top.Y)
return e2.Top.X < TopX(e1, e2.Top.Y);
else
return e1.Top.X > TopX(e2, e1.Top.Y);
} else
return e2.Curr.X < e1.Curr.X;
}
//------------------------------------------------------------------------------
bool GetOverlap(const cInt a1, const cInt a2, const cInt b1, const cInt b2,
cInt &Left, cInt &Right) {
if (a1 < a2) {
if (b1 < b2) {
Left = std::max(a1, b1);
Right = std::min(a2, b2);
} else {
Left = std::max(a1, b2);
Right = std::min(a2, b1);
}
} else {
if (b1 < b2) {
Left = std::max(a2, b1);
Right = std::min(a1, b2);
} else {
Left = std::max(a2, b2);
Right = std::min(a1, b1);
}
}
return Left < Right;
}
//------------------------------------------------------------------------------
inline void UpdateOutPtIdxs(OutRec &outrec) {
OutPt *op = outrec.Pts;
do {
op->Idx = outrec.Idx;
op = op->Prev;
} while (op != outrec.Pts);
}
//------------------------------------------------------------------------------
void Clipper::InsertEdgeIntoAEL(TEdge *edge, TEdge *startEdge) {
if (!m_ActiveEdges) {
edge->PrevInAEL = 0;
edge->NextInAEL = 0;
m_ActiveEdges = edge;
} else if (!startEdge && E2InsertsBeforeE1(*m_ActiveEdges, *edge)) {
edge->PrevInAEL = 0;
edge->NextInAEL = m_ActiveEdges;
m_ActiveEdges->PrevInAEL = edge;
m_ActiveEdges = edge;
} else {
if (!startEdge)
startEdge = m_ActiveEdges;
while (startEdge->NextInAEL &&
!E2InsertsBeforeE1(*startEdge->NextInAEL, *edge))
startEdge = startEdge->NextInAEL;
edge->NextInAEL = startEdge->NextInAEL;
if (startEdge->NextInAEL)
startEdge->NextInAEL->PrevInAEL = edge;
edge->PrevInAEL = startEdge;
startEdge->NextInAEL = edge;
}
}
//----------------------------------------------------------------------
OutPt *DupOutPt(OutPt *outPt, bool InsertAfter) {
OutPt *result = new OutPt;
result->Pt = outPt->Pt;
result->Idx = outPt->Idx;
if (InsertAfter) {
result->Next = outPt->Next;
result->Prev = outPt;
outPt->Next->Prev = result;
outPt->Next = result;
} else {
result->Prev = outPt->Prev;
result->Next = outPt;
outPt->Prev->Next = result;
outPt->Prev = result;
}
return result;
}
//------------------------------------------------------------------------------
bool JoinHorz(OutPt *op1, OutPt *op1b, OutPt *op2, OutPt *op2b,
const IntPoint Pt, bool DiscardLeft) {
Direction Dir1 = (op1->Pt.X > op1b->Pt.X ? dRightToLeft : dLeftToRight);
Direction Dir2 = (op2->Pt.X > op2b->Pt.X ? dRightToLeft : dLeftToRight);
if (Dir1 == Dir2)
return false;
// When DiscardLeft, we want Op1b to be on the Left of Op1, otherwise we
// want Op1b to be on the Right. (And likewise with Op2 and Op2b.)
// So, to facilitate this while inserting Op1b and Op2b ...
// when DiscardLeft, make sure we're AT or RIGHT of Pt before adding Op1b,
// otherwise make sure we're AT or LEFT of Pt. (Likewise with Op2b.)
if (Dir1 == dLeftToRight) {
while (op1->Next->Pt.X <= Pt.X && op1->Next->Pt.X >= op1->Pt.X &&
op1->Next->Pt.Y == Pt.Y)
op1 = op1->Next;
if (DiscardLeft && (op1->Pt.X != Pt.X))
op1 = op1->Next;
op1b = DupOutPt(op1, !DiscardLeft);
if (op1b->Pt != Pt) {
op1 = op1b;
op1->Pt = Pt;
op1b = DupOutPt(op1, !DiscardLeft);
}
} else {
while (op1->Next->Pt.X >= Pt.X && op1->Next->Pt.X <= op1->Pt.X &&
op1->Next->Pt.Y == Pt.Y)
op1 = op1->Next;
if (!DiscardLeft && (op1->Pt.X != Pt.X))
op1 = op1->Next;
op1b = DupOutPt(op1, DiscardLeft);
if (op1b->Pt != Pt) {
op1 = op1b;
op1->Pt = Pt;
op1b = DupOutPt(op1, DiscardLeft);
}
}
if (Dir2 == dLeftToRight) {
while (op2->Next->Pt.X <= Pt.X && op2->Next->Pt.X >= op2->Pt.X &&
op2->Next->Pt.Y == Pt.Y)
op2 = op2->Next;
if (DiscardLeft && (op2->Pt.X != Pt.X))
op2 = op2->Next;
op2b = DupOutPt(op2, !DiscardLeft);
if (op2b->Pt != Pt) {
op2 = op2b;
op2->Pt = Pt;
op2b = DupOutPt(op2, !DiscardLeft);
};
} else {
while (op2->Next->Pt.X >= Pt.X && op2->Next->Pt.X <= op2->Pt.X &&
op2->Next->Pt.Y == Pt.Y)
op2 = op2->Next;
if (!DiscardLeft && (op2->Pt.X != Pt.X))
op2 = op2->Next;
op2b = DupOutPt(op2, DiscardLeft);
if (op2b->Pt != Pt) {
op2 = op2b;
op2->Pt = Pt;
op2b = DupOutPt(op2, DiscardLeft);
};
};
if ((Dir1 == dLeftToRight) == DiscardLeft) {
op1->Prev = op2;
op2->Next = op1;
op1b->Next = op2b;
op2b->Prev = op1b;
} else {
op1->Next = op2;
op2->Prev = op1;
op1b->Prev = op2b;
op2b->Next = op1b;
}
return true;
}
//------------------------------------------------------------------------------
bool Clipper::JoinPoints(Join *j, OutRec *outRec1, OutRec *outRec2) {
OutPt *op1 = j->OutPt1, *op1b;
OutPt *op2 = j->OutPt2, *op2b;
// There are 3 kinds of joins for output polygons ...
// 1. Horizontal joins where Join.OutPt1 & Join.OutPt2 are vertices anywhere
// along (horizontal) collinear edges (& Join.OffPt is on the same
// horizontal).
// 2. Non-horizontal joins where Join.OutPt1 & Join.OutPt2 are at the same
// location at the Bottom of the overlapping segment (& Join.OffPt is above).
// 3. StrictSimple joins where edges touch but are not collinear and where
// Join.OutPt1, Join.OutPt2 & Join.OffPt all share the same point.
bool isHorizontal = (j->OutPt1->Pt.Y == j->OffPt.Y);
if (isHorizontal && (j->OffPt == j->OutPt1->Pt) &&
(j->OffPt == j->OutPt2->Pt)) {
// Strictly Simple join ...
if (outRec1 != outRec2)
return false;
op1b = j->OutPt1->Next;
while (op1b != op1 && (op1b->Pt == j->OffPt))
op1b = op1b->Next;
bool reverse1 = (op1b->Pt.Y > j->OffPt.Y);
op2b = j->OutPt2->Next;
while (op2b != op2 && (op2b->Pt == j->OffPt))
op2b = op2b->Next;
bool reverse2 = (op2b->Pt.Y > j->OffPt.Y);
if (reverse1 == reverse2)
return false;
if (reverse1) {
op1b = DupOutPt(op1, false);
op2b = DupOutPt(op2, true);
op1->Prev = op2;
op2->Next = op1;
op1b->Next = op2b;
op2b->Prev = op1b;
j->OutPt1 = op1;
j->OutPt2 = op1b;
return true;
} else {
op1b = DupOutPt(op1, true);
op2b = DupOutPt(op2, false);
op1->Next = op2;
op2->Prev = op1;
op1b->Prev = op2b;
op2b->Next = op1b;
j->OutPt1 = op1;
j->OutPt2 = op1b;
return true;
}
} else if (isHorizontal) {
// treat horizontal joins differently to non-horizontal joins since with
// them we're not yet sure where the overlapping is. OutPt1.Pt & OutPt2.Pt
// may be anywhere along the horizontal edge.
op1b = op1;
while (op1->Prev->Pt.Y == op1->Pt.Y && op1->Prev != op1b &&
op1->Prev != op2)
op1 = op1->Prev;
while (op1b->Next->Pt.Y == op1b->Pt.Y && op1b->Next != op1 &&
op1b->Next != op2)
op1b = op1b->Next;
if (op1b->Next == op1 || op1b->Next == op2)
return false; // a flat 'polygon'
op2b = op2;
while (op2->Prev->Pt.Y == op2->Pt.Y && op2->Prev != op2b &&
op2->Prev != op1b)
op2 = op2->Prev;
while (op2b->Next->Pt.Y == op2b->Pt.Y && op2b->Next != op2 &&
op2b->Next != op1)
op2b = op2b->Next;
if (op2b->Next == op2 || op2b->Next == op1)
return false; // a flat 'polygon'
cInt Left, Right;
// Op1 --> Op1b & Op2 --> Op2b are the extremites of the horizontal edges
if (!GetOverlap(op1->Pt.X, op1b->Pt.X, op2->Pt.X, op2b->Pt.X, Left, Right))
return false;
// DiscardLeftSide: when overlapping edges are joined, a spike will created
// which needs to be cleaned up. However, we don't want Op1 or Op2 caught up
// on the discard Side as either may still be needed for other joins ...
IntPoint Pt;
bool DiscardLeftSide;
if (op1->Pt.X >= Left && op1->Pt.X <= Right) {
Pt = op1->Pt;
DiscardLeftSide = (op1->Pt.X > op1b->Pt.X);
} else if (op2->Pt.X >= Left && op2->Pt.X <= Right) {
Pt = op2->Pt;
DiscardLeftSide = (op2->Pt.X > op2b->Pt.X);
} else if (op1b->Pt.X >= Left && op1b->Pt.X <= Right) {
Pt = op1b->Pt;
DiscardLeftSide = op1b->Pt.X > op1->Pt.X;
} else {
Pt = op2b->Pt;
DiscardLeftSide = (op2b->Pt.X > op2->Pt.X);
}
j->OutPt1 = op1;
j->OutPt2 = op2;
return JoinHorz(op1, op1b, op2, op2b, Pt, DiscardLeftSide);
} else {
// nb: For non-horizontal joins ...
// 1. Jr.OutPt1.Pt.Y == Jr.OutPt2.Pt.Y
// 2. Jr.OutPt1.Pt > Jr.OffPt.Y
// make sure the polygons are correctly oriented ...
op1b = op1->Next;
while ((op1b->Pt == op1->Pt) && (op1b != op1))
op1b = op1b->Next;
bool Reverse1 = ((op1b->Pt.Y > op1->Pt.Y) ||
!SlopesEqual(op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange));
if (Reverse1) {
op1b = op1->Prev;
while ((op1b->Pt == op1->Pt) && (op1b != op1))
op1b = op1b->Prev;
if ((op1b->Pt.Y > op1->Pt.Y) ||
!SlopesEqual(op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange))
return false;
};
op2b = op2->Next;
while ((op2b->Pt == op2->Pt) && (op2b != op2))
op2b = op2b->Next;
bool Reverse2 = ((op2b->Pt.Y > op2->Pt.Y) ||
!SlopesEqual(op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange));
if (Reverse2) {
op2b = op2->Prev;
while ((op2b->Pt == op2->Pt) && (op2b != op2))
op2b = op2b->Prev;
if ((op2b->Pt.Y > op2->Pt.Y) ||
!SlopesEqual(op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange))
return false;
}
if ((op1b == op1) || (op2b == op2) || (op1b == op2b) ||
((outRec1 == outRec2) && (Reverse1 == Reverse2)))
return false;
if (Reverse1) {
op1b = DupOutPt(op1, false);
op2b = DupOutPt(op2, true);
op1->Prev = op2;
op2->Next = op1;
op1b->Next = op2b;
op2b->Prev = op1b;
j->OutPt1 = op1;
j->OutPt2 = op1b;
return true;
} else {
op1b = DupOutPt(op1, true);
op2b = DupOutPt(op2, false);
op1->Next = op2;
op2->Prev = op1;
op1b->Prev = op2b;
op2b->Next = op1b;
j->OutPt1 = op1;
j->OutPt2 = op1b;
return true;
}
}
}
//----------------------------------------------------------------------
static OutRec *ParseFirstLeft(OutRec *FirstLeft) {
while (FirstLeft && !FirstLeft->Pts)
FirstLeft = FirstLeft->FirstLeft;
return FirstLeft;
}
//------------------------------------------------------------------------------
void Clipper::FixupFirstLefts1(OutRec *OldOutRec, OutRec *NewOutRec) {
// tests if NewOutRec contains the polygon before reassigning FirstLeft
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) {
OutRec *outRec = m_PolyOuts[i];
OutRec *firstLeft = ParseFirstLeft(outRec->FirstLeft);
if (outRec->Pts && firstLeft == OldOutRec) {
if (Poly2ContainsPoly1(outRec->Pts, NewOutRec->Pts))
outRec->FirstLeft = NewOutRec;
}
}
}
//----------------------------------------------------------------------
void Clipper::FixupFirstLefts2(OutRec *InnerOutRec, OutRec *OuterOutRec) {
// A polygon has split into two such that one is now the inner of the other.
// It's possible that these polygons now wrap around other polygons, so check
// every polygon that's also contained by OuterOutRec's FirstLeft container
//(including 0) to see if they've become inner to the new inner polygon ...
OutRec *orfl = OuterOutRec->FirstLeft;
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) {
OutRec *outRec = m_PolyOuts[i];
if (!outRec->Pts || outRec == OuterOutRec || outRec == InnerOutRec)
continue;
OutRec *firstLeft = ParseFirstLeft(outRec->FirstLeft);
if (firstLeft != orfl && firstLeft != InnerOutRec &&
firstLeft != OuterOutRec)
continue;
if (Poly2ContainsPoly1(outRec->Pts, InnerOutRec->Pts))
outRec->FirstLeft = InnerOutRec;
else if (Poly2ContainsPoly1(outRec->Pts, OuterOutRec->Pts))
outRec->FirstLeft = OuterOutRec;
else if (outRec->FirstLeft == InnerOutRec ||
outRec->FirstLeft == OuterOutRec)
outRec->FirstLeft = orfl;
}
}
//----------------------------------------------------------------------
void Clipper::FixupFirstLefts3(OutRec *OldOutRec, OutRec *NewOutRec) {
// reassigns FirstLeft WITHOUT testing if NewOutRec contains the polygon
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) {
OutRec *outRec = m_PolyOuts[i];
OutRec *firstLeft = ParseFirstLeft(outRec->FirstLeft);
if (outRec->Pts && firstLeft == OldOutRec)
outRec->FirstLeft = NewOutRec;
}
}
//----------------------------------------------------------------------
void Clipper::JoinCommonEdges() {
for (JoinList::size_type i = 0; i < m_Joins.size(); i++) {
Join *join = m_Joins[i];
OutRec *outRec1 = GetOutRec(join->OutPt1->Idx);
OutRec *outRec2 = GetOutRec(join->OutPt2->Idx);
if (!outRec1->Pts || !outRec2->Pts)
continue;
if (outRec1->IsOpen || outRec2->IsOpen)
continue;
// get the polygon fragment with the correct hole state (FirstLeft)
// before calling JoinPoints() ...
OutRec *holeStateRec;
if (outRec1 == outRec2)
holeStateRec = outRec1;
else if (OutRec1RightOfOutRec2(outRec1, outRec2))
holeStateRec = outRec2;
else if (OutRec1RightOfOutRec2(outRec2, outRec1))
holeStateRec = outRec1;
else
holeStateRec = GetLowermostRec(outRec1, outRec2);
if (!JoinPoints(join, outRec1, outRec2))
continue;
if (outRec1 == outRec2) {
// instead of joining two polygons, we've just created a new one by
// splitting one polygon into two.
outRec1->Pts = join->OutPt1;
outRec1->BottomPt = 0;
outRec2 = CreateOutRec();
outRec2->Pts = join->OutPt2;
// update all OutRec2.Pts Idx's ...
UpdateOutPtIdxs(*outRec2);
if (Poly2ContainsPoly1(outRec2->Pts, outRec1->Pts)) {
// outRec1 contains outRec2 ...
outRec2->IsHole = !outRec1->IsHole;
outRec2->FirstLeft = outRec1;
if (m_UsingPolyTree)
FixupFirstLefts2(outRec2, outRec1);
if ((outRec2->IsHole ^ m_ReverseOutput) == (Area(*outRec2) > 0))
ReversePolyPtLinks(outRec2->Pts);
} else if (Poly2ContainsPoly1(outRec1->Pts, outRec2->Pts)) {
// outRec2 contains outRec1 ...
outRec2->IsHole = outRec1->IsHole;
outRec1->IsHole = !outRec2->IsHole;
outRec2->FirstLeft = outRec1->FirstLeft;
outRec1->FirstLeft = outRec2;
if (m_UsingPolyTree)
FixupFirstLefts2(outRec1, outRec2);
if ((outRec1->IsHole ^ m_ReverseOutput) == (Area(*outRec1) > 0))
ReversePolyPtLinks(outRec1->Pts);
} else {
// the 2 polygons are completely separate ...
outRec2->IsHole = outRec1->IsHole;
outRec2->FirstLeft = outRec1->FirstLeft;
// fixup FirstLeft pointers that may need reassigning to OutRec2
if (m_UsingPolyTree)
FixupFirstLefts1(outRec1, outRec2);
}
} else {
// joined 2 polygons together ...
outRec2->Pts = 0;
outRec2->BottomPt = 0;
outRec2->Idx = outRec1->Idx;
outRec1->IsHole = holeStateRec->IsHole;
if (holeStateRec == outRec2)
outRec1->FirstLeft = outRec2->FirstLeft;
outRec2->FirstLeft = outRec1;
if (m_UsingPolyTree)
FixupFirstLefts3(outRec2, outRec1);
}
}
}
//------------------------------------------------------------------------------
// ClipperOffset support functions ...
//------------------------------------------------------------------------------
DoublePoint GetUnitNormal(const IntPoint &pt1, const IntPoint &pt2) {
if (pt2.X == pt1.X && pt2.Y == pt1.Y)
return DoublePoint(0, 0);
double Dx = (double)(pt2.X - pt1.X);
double dy = (double)(pt2.Y - pt1.Y);
double f = 1 * 1.0 / std::sqrt(Dx * Dx + dy * dy);
Dx *= f;
dy *= f;
return DoublePoint(dy, -Dx);
}
//------------------------------------------------------------------------------
// ClipperOffset class
//------------------------------------------------------------------------------
ClipperOffset::ClipperOffset(double miterLimit, double arcTolerance) {
this->MiterLimit = miterLimit;
this->ArcTolerance = arcTolerance;
m_lowest.X = -1;
}
//------------------------------------------------------------------------------
ClipperOffset::~ClipperOffset() { Clear(); }
//------------------------------------------------------------------------------
void ClipperOffset::Clear() {
for (int i = 0; i < m_polyNodes.ChildCount(); ++i)
delete m_polyNodes.Childs[i];
m_polyNodes.Childs.clear();
m_lowest.X = -1;
}
//------------------------------------------------------------------------------
void ClipperOffset::AddPath(const Path &path, JoinType joinType,
EndType endType) {
int highI = (int)path.size() - 1;
if (highI < 0)
return;
PolyNode *newNode = new PolyNode();
newNode->m_jointype = joinType;
newNode->m_endtype = endType;
// strip duplicate points from path and also get index to the lowest point ...
if (endType == etClosedLine || endType == etClosedPolygon)
while (highI > 0 && path[0] == path[highI])
highI--;
newNode->Contour.reserve(highI + 1);
newNode->Contour.push_back(path[0]);
int j = 0, k = 0;
for (int i = 1; i <= highI; i++)
if (newNode->Contour[j] != path[i]) {
j++;
newNode->Contour.push_back(path[i]);
if (path[i].Y > newNode->Contour[k].Y ||
(path[i].Y == newNode->Contour[k].Y &&
path[i].X < newNode->Contour[k].X))
k = j;
}
if (endType == etClosedPolygon && j < 2) {
delete newNode;
return;
}
m_polyNodes.AddChild(*newNode);
// if this path's lowest pt is lower than all the others then update m_lowest
if (endType != etClosedPolygon)
return;
if (m_lowest.X < 0)
m_lowest = IntPoint(m_polyNodes.ChildCount() - 1, k);
else {
IntPoint ip = m_polyNodes.Childs[(int)m_lowest.X]->Contour[(int)m_lowest.Y];
if (newNode->Contour[k].Y > ip.Y ||
(newNode->Contour[k].Y == ip.Y && newNode->Contour[k].X < ip.X))
m_lowest = IntPoint(m_polyNodes.ChildCount() - 1, k);
}
}
//------------------------------------------------------------------------------
void ClipperOffset::AddPaths(const Paths &paths, JoinType joinType,
EndType endType) {
for (Paths::size_type i = 0; i < paths.size(); ++i)
AddPath(paths[i], joinType, endType);
}
//------------------------------------------------------------------------------
void ClipperOffset::FixOrientations() {
// fixup orientations of all closed paths if the orientation of the
// closed path with the lowermost vertex is wrong ...
if (m_lowest.X >= 0 &&
!Orientation(m_polyNodes.Childs[(int)m_lowest.X]->Contour)) {
for (int i = 0; i < m_polyNodes.ChildCount(); ++i) {
PolyNode &node = *m_polyNodes.Childs[i];
if (node.m_endtype == etClosedPolygon ||
(node.m_endtype == etClosedLine && Orientation(node.Contour)))
ReversePath(node.Contour);
}
} else {
for (int i = 0; i < m_polyNodes.ChildCount(); ++i) {
PolyNode &node = *m_polyNodes.Childs[i];
if (node.m_endtype == etClosedLine && !Orientation(node.Contour))
ReversePath(node.Contour);
}
}
}
//------------------------------------------------------------------------------
void ClipperOffset::Execute(Paths &solution, double delta) {
solution.clear();
FixOrientations();
DoOffset(delta);
// now clean up 'corners' ...
Clipper clpr;
clpr.AddPaths(m_destPolys, ptSubject, true);
if (delta > 0) {
clpr.Execute(ctUnion, solution, pftPositive, pftPositive);
} else {
IntRect r = clpr.GetBounds();
Path outer(4);
outer[0] = IntPoint(r.left - 10, r.bottom + 10);
outer[1] = IntPoint(r.right + 10, r.bottom + 10);
outer[2] = IntPoint(r.right + 10, r.top - 10);
outer[3] = IntPoint(r.left - 10, r.top - 10);
clpr.AddPath(outer, ptSubject, true);
clpr.ReverseSolution(true);
clpr.Execute(ctUnion, solution, pftNegative, pftNegative);
if (solution.size() > 0)
solution.erase(solution.begin());
}
}
//------------------------------------------------------------------------------
void ClipperOffset::Execute(PolyTree &solution, double delta) {
solution.Clear();
FixOrientations();
DoOffset(delta);
// now clean up 'corners' ...
Clipper clpr;
clpr.AddPaths(m_destPolys, ptSubject, true);
if (delta > 0) {
clpr.Execute(ctUnion, solution, pftPositive, pftPositive);
} else {
IntRect r = clpr.GetBounds();
Path outer(4);
outer[0] = IntPoint(r.left - 10, r.bottom + 10);
outer[1] = IntPoint(r.right + 10, r.bottom + 10);
outer[2] = IntPoint(r.right + 10, r.top - 10);
outer[3] = IntPoint(r.left - 10, r.top - 10);
clpr.AddPath(outer, ptSubject, true);
clpr.ReverseSolution(true);
clpr.Execute(ctUnion, solution, pftNegative, pftNegative);
// remove the outer PolyNode rectangle ...
if (solution.ChildCount() == 1 && solution.Childs[0]->ChildCount() > 0) {
PolyNode *outerNode = solution.Childs[0];
solution.Childs.reserve(outerNode->ChildCount());
solution.Childs[0] = outerNode->Childs[0];
solution.Childs[0]->Parent = outerNode->Parent;
for (int i = 1; i < outerNode->ChildCount(); ++i)
solution.AddChild(*outerNode->Childs[i]);
} else
solution.Clear();
}
}
//------------------------------------------------------------------------------
void ClipperOffset::DoOffset(double delta) {
m_destPolys.clear();
m_delta = delta;
// if Zero offset, just copy any CLOSED polygons to m_p and return ...
if (NEAR_ZERO(delta)) {
m_destPolys.reserve(m_polyNodes.ChildCount());
for (int i = 0; i < m_polyNodes.ChildCount(); i++) {
PolyNode &node = *m_polyNodes.Childs[i];
if (node.m_endtype == etClosedPolygon)
m_destPolys.push_back(node.Contour);
}
return;
}
// see offset_triginometry3.svg in the documentation folder ...
if (MiterLimit > 2)
m_miterLim = 2 / (MiterLimit * MiterLimit);
else
m_miterLim = 0.5;
double y;
if (ArcTolerance <= 0.0)
y = def_arc_tolerance;
else if (ArcTolerance > std::fabs(delta) * def_arc_tolerance)
y = std::fabs(delta) * def_arc_tolerance;
else
y = ArcTolerance;
// see offset_triginometry2.svg in the documentation folder ...
double steps = pi / std::acos(1 - y / std::fabs(delta));
if (steps > std::fabs(delta) * pi)
steps = std::fabs(delta) * pi; // ie excessive precision check
m_sin = std::sin(two_pi / steps);
m_cos = std::cos(two_pi / steps);
m_StepsPerRad = steps / two_pi;
if (delta < 0.0)
m_sin = -m_sin;
m_destPolys.reserve(m_polyNodes.ChildCount() * 2);
for (int i = 0; i < m_polyNodes.ChildCount(); i++) {
PolyNode &node = *m_polyNodes.Childs[i];
m_srcPoly = node.Contour;
int len = (int)m_srcPoly.size();
if (len == 0 ||
(delta <= 0 && (len < 3 || node.m_endtype != etClosedPolygon)))
continue;
m_destPoly.clear();
if (len == 1) {
if (node.m_jointype == jtRound) {
double X = 1.0, Y = 0.0;
for (cInt j = 1; j <= steps; j++) {
m_destPoly.push_back(IntPoint(Round(m_srcPoly[0].X + X * delta),
Round(m_srcPoly[0].Y + Y * delta)));
double X2 = X;
X = X * m_cos - m_sin * Y;
Y = X2 * m_sin + Y * m_cos;
}
} else {
double X = -1.0, Y = -1.0;
for (int j = 0; j < 4; ++j) {
m_destPoly.push_back(IntPoint(Round(m_srcPoly[0].X + X * delta),
Round(m_srcPoly[0].Y + Y * delta)));
if (X < 0)
X = 1;
else if (Y < 0)
Y = 1;
else
X = -1;
}
}
m_destPolys.push_back(m_destPoly);
continue;
}
// build m_normals ...
m_normals.clear();
m_normals.reserve(len);
for (int j = 0; j < len - 1; ++j)
m_normals.push_back(GetUnitNormal(m_srcPoly[j], m_srcPoly[j + 1]));
if (node.m_endtype == etClosedLine || node.m_endtype == etClosedPolygon)
m_normals.push_back(GetUnitNormal(m_srcPoly[len - 1], m_srcPoly[0]));
else
m_normals.push_back(DoublePoint(m_normals[len - 2]));
if (node.m_endtype == etClosedPolygon) {
int k = len - 1;
for (int j = 0; j < len; ++j)
OffsetPoint(j, k, node.m_jointype);
m_destPolys.push_back(m_destPoly);
} else if (node.m_endtype == etClosedLine) {
int k = len - 1;
for (int j = 0; j < len; ++j)
OffsetPoint(j, k, node.m_jointype);
m_destPolys.push_back(m_destPoly);
m_destPoly.clear();
// re-build m_normals ...
DoublePoint n = m_normals[len - 1];
for (int j = len - 1; j > 0; j--)
m_normals[j] = DoublePoint(-m_normals[j - 1].X, -m_normals[j - 1].Y);
m_normals[0] = DoublePoint(-n.X, -n.Y);
k = 0;
for (int j = len - 1; j >= 0; j--)
OffsetPoint(j, k, node.m_jointype);
m_destPolys.push_back(m_destPoly);
} else {
int k = 0;
for (int j = 1; j < len - 1; ++j)
OffsetPoint(j, k, node.m_jointype);
IntPoint pt1;
if (node.m_endtype == etOpenButt) {
int j = len - 1;
pt1 = IntPoint((cInt)Round(m_srcPoly[j].X + m_normals[j].X * delta),
(cInt)Round(m_srcPoly[j].Y + m_normals[j].Y * delta));
m_destPoly.push_back(pt1);
pt1 = IntPoint((cInt)Round(m_srcPoly[j].X - m_normals[j].X * delta),
(cInt)Round(m_srcPoly[j].Y - m_normals[j].Y * delta));
m_destPoly.push_back(pt1);
} else {
int j = len - 1;
k = len - 2;
m_sinA = 0;
m_normals[j] = DoublePoint(-m_normals[j].X, -m_normals[j].Y);
if (node.m_endtype == etOpenSquare)
DoSquare(j, k);
else
DoRound(j, k);
}
// re-build m_normals ...
for (int j = len - 1; j > 0; j--)
m_normals[j] = DoublePoint(-m_normals[j - 1].X, -m_normals[j - 1].Y);
m_normals[0] = DoublePoint(-m_normals[1].X, -m_normals[1].Y);
k = len - 1;
for (int j = k - 1; j > 0; --j)
OffsetPoint(j, k, node.m_jointype);
if (node.m_endtype == etOpenButt) {
pt1 = IntPoint((cInt)Round(m_srcPoly[0].X - m_normals[0].X * delta),
(cInt)Round(m_srcPoly[0].Y - m_normals[0].Y * delta));
m_destPoly.push_back(pt1);
pt1 = IntPoint((cInt)Round(m_srcPoly[0].X + m_normals[0].X * delta),
(cInt)Round(m_srcPoly[0].Y + m_normals[0].Y * delta));
m_destPoly.push_back(pt1);
} else {
k = 1;
m_sinA = 0;
if (node.m_endtype == etOpenSquare)
DoSquare(0, 1);
else
DoRound(0, 1);
}
m_destPolys.push_back(m_destPoly);
}
}
}
//------------------------------------------------------------------------------
void ClipperOffset::OffsetPoint(int j, int &k, JoinType jointype) {
// cross product ...
m_sinA = (m_normals[k].X * m_normals[j].Y - m_normals[j].X * m_normals[k].Y);
if (std::fabs(m_sinA * m_delta) < 1.0) {
// dot product ...
double cosA =
(m_normals[k].X * m_normals[j].X + m_normals[j].Y * m_normals[k].Y);
if (cosA > 0) // angle => 0 degrees
{
m_destPoly.push_back(
IntPoint(Round(m_srcPoly[j].X + m_normals[k].X * m_delta),
Round(m_srcPoly[j].Y + m_normals[k].Y * m_delta)));
return;
}
// else angle => 180 degrees
} else if (m_sinA > 1.0)
m_sinA = 1.0;
else if (m_sinA < -1.0)
m_sinA = -1.0;
if (m_sinA * m_delta < 0) {
m_destPoly.push_back(
IntPoint(Round(m_srcPoly[j].X + m_normals[k].X * m_delta),
Round(m_srcPoly[j].Y + m_normals[k].Y * m_delta)));
m_destPoly.push_back(m_srcPoly[j]);
m_destPoly.push_back(
IntPoint(Round(m_srcPoly[j].X + m_normals[j].X * m_delta),
Round(m_srcPoly[j].Y + m_normals[j].Y * m_delta)));
} else
switch (jointype) {
case jtMiter: {
double r = 1 + (m_normals[j].X * m_normals[k].X +
m_normals[j].Y * m_normals[k].Y);
if (r >= m_miterLim)
DoMiter(j, k, r);
else
DoSquare(j, k);
break;
}
case jtSquare:
DoSquare(j, k);
break;
case jtRound:
DoRound(j, k);
break;
}
k = j;
}
//------------------------------------------------------------------------------
void ClipperOffset::DoSquare(int j, int k) {
double dx = std::tan(std::atan2(m_sinA, m_normals[k].X * m_normals[j].X +
m_normals[k].Y * m_normals[j].Y) /
4);
m_destPoly.push_back(IntPoint(
Round(m_srcPoly[j].X + m_delta * (m_normals[k].X - m_normals[k].Y * dx)),
Round(m_srcPoly[j].Y +
m_delta * (m_normals[k].Y + m_normals[k].X * dx))));
m_destPoly.push_back(IntPoint(
Round(m_srcPoly[j].X + m_delta * (m_normals[j].X + m_normals[j].Y * dx)),
Round(m_srcPoly[j].Y +
m_delta * (m_normals[j].Y - m_normals[j].X * dx))));
}
//------------------------------------------------------------------------------
void ClipperOffset::DoMiter(int j, int k, double r) {
double q = m_delta / r;
m_destPoly.push_back(
IntPoint(Round(m_srcPoly[j].X + (m_normals[k].X + m_normals[j].X) * q),
Round(m_srcPoly[j].Y + (m_normals[k].Y + m_normals[j].Y) * q)));
}
//------------------------------------------------------------------------------
void ClipperOffset::DoRound(int j, int k) {
double a = std::atan2(m_sinA, m_normals[k].X * m_normals[j].X +
m_normals[k].Y * m_normals[j].Y);
int steps = std::max((int)Round(m_StepsPerRad * std::fabs(a)), 1);
double X = m_normals[k].X, Y = m_normals[k].Y, X2;
for (int i = 0; i < steps; ++i) {
m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + X * m_delta),
Round(m_srcPoly[j].Y + Y * m_delta)));
X2 = X;
X = X * m_cos - m_sin * Y;
Y = X2 * m_sin + Y * m_cos;
}
m_destPoly.push_back(
IntPoint(Round(m_srcPoly[j].X + m_normals[j].X * m_delta),
Round(m_srcPoly[j].Y + m_normals[j].Y * m_delta)));
}
//------------------------------------------------------------------------------
// Miscellaneous public functions
//------------------------------------------------------------------------------
void Clipper::DoSimplePolygons() {
PolyOutList::size_type i = 0;
while (i < m_PolyOuts.size()) {
OutRec *outrec = m_PolyOuts[i++];
OutPt *op = outrec->Pts;
if (!op || outrec->IsOpen)
continue;
do // for each Pt in Polygon until duplicate found do ...
{
OutPt *op2 = op->Next;
while (op2 != outrec->Pts) {
if ((op->Pt == op2->Pt) && op2->Next != op && op2->Prev != op) {
// split the polygon into two ...
OutPt *op3 = op->Prev;
OutPt *op4 = op2->Prev;
op->Prev = op4;
op4->Next = op;
op2->Prev = op3;
op3->Next = op2;
outrec->Pts = op;
OutRec *outrec2 = CreateOutRec();
outrec2->Pts = op2;
UpdateOutPtIdxs(*outrec2);
if (Poly2ContainsPoly1(outrec2->Pts, outrec->Pts)) {
// OutRec2 is contained by OutRec1 ...
outrec2->IsHole = !outrec->IsHole;
outrec2->FirstLeft = outrec;
if (m_UsingPolyTree)
FixupFirstLefts2(outrec2, outrec);
} else if (Poly2ContainsPoly1(outrec->Pts, outrec2->Pts)) {
// OutRec1 is contained by OutRec2 ...
outrec2->IsHole = outrec->IsHole;
outrec->IsHole = !outrec2->IsHole;
outrec2->FirstLeft = outrec->FirstLeft;
outrec->FirstLeft = outrec2;
if (m_UsingPolyTree)
FixupFirstLefts2(outrec, outrec2);
} else {
// the 2 polygons are separate ...
outrec2->IsHole = outrec->IsHole;
outrec2->FirstLeft = outrec->FirstLeft;
if (m_UsingPolyTree)
FixupFirstLefts1(outrec, outrec2);
}
op2 = op; // ie get ready for the Next iteration
}
op2 = op2->Next;
}
op = op->Next;
} while (op != outrec->Pts);
}
}
//------------------------------------------------------------------------------
void ReversePath(Path &p) { std::reverse(p.begin(), p.end()); }
//------------------------------------------------------------------------------
void ReversePaths(Paths &p) {
for (Paths::size_type i = 0; i < p.size(); ++i)
ReversePath(p[i]);
}
//------------------------------------------------------------------------------
void SimplifyPolygon(const Path &in_poly, Paths &out_polys,
PolyFillType fillType) {
Clipper c;
c.StrictlySimple(true);
c.AddPath(in_poly, ptSubject, true);
c.Execute(ctUnion, out_polys, fillType, fillType);
}
//------------------------------------------------------------------------------
void SimplifyPolygons(const Paths &in_polys, Paths &out_polys,
PolyFillType fillType) {
Clipper c;
c.StrictlySimple(true);
c.AddPaths(in_polys, ptSubject, true);
c.Execute(ctUnion, out_polys, fillType, fillType);
}
//------------------------------------------------------------------------------
void SimplifyPolygons(Paths &polys, PolyFillType fillType) {
SimplifyPolygons(polys, polys, fillType);
}
//------------------------------------------------------------------------------
inline double DistanceSqrd(const IntPoint &pt1, const IntPoint &pt2) {
double Dx = ((double)pt1.X - pt2.X);
double dy = ((double)pt1.Y - pt2.Y);
return (Dx * Dx + dy * dy);
}
//------------------------------------------------------------------------------
double DistanceFromLineSqrd(const IntPoint &pt, const IntPoint &ln1,
const IntPoint &ln2) {
// The equation of a line in general form (Ax + By + C = 0)
// given 2 points (x�,y�) & (x�,y�) is ...
//(y� - y�)x + (x� - x�)y + (y� - y�)x� - (x� - x�)y� = 0
// A = (y� - y�); B = (x� - x�); C = (y� - y�)x� - (x� - x�)y�
// perpendicular distance of point (x�,y�) = (Ax� + By� + C)/Sqrt(A� + B�)
// see http://en.wikipedia.org/wiki/Perpendicular_distance
double A = double(ln1.Y - ln2.Y);
double B = double(ln2.X - ln1.X);
double C = A * ln1.X + B * ln1.Y;
C = A * pt.X + B * pt.Y - C;
return (C * C) / (A * A + B * B);
}
//---------------------------------------------------------------------------
bool SlopesNearCollinear(const IntPoint &pt1, const IntPoint &pt2,
const IntPoint &pt3, double distSqrd) {
// this function is more accurate when the point that's geometrically
// between the other 2 points is the one that's tested for distance.
// ie makes it more likely to pick up 'spikes' ...
if (Abs(pt1.X - pt2.X) > Abs(pt1.Y - pt2.Y)) {
if ((pt1.X > pt2.X) == (pt1.X < pt3.X))
return DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd;
else if ((pt2.X > pt1.X) == (pt2.X < pt3.X))
return DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd;
else
return DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd;
} else {
if ((pt1.Y > pt2.Y) == (pt1.Y < pt3.Y))
return DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd;
else if ((pt2.Y > pt1.Y) == (pt2.Y < pt3.Y))
return DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd;
else
return DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd;
}
}
//------------------------------------------------------------------------------
bool PointsAreClose(IntPoint pt1, IntPoint pt2, double distSqrd) {
double Dx = (double)pt1.X - pt2.X;
double dy = (double)pt1.Y - pt2.Y;
return ((Dx * Dx) + (dy * dy) <= distSqrd);
}
//------------------------------------------------------------------------------
OutPt *ExcludeOp(OutPt *op) {
OutPt *result = op->Prev;
result->Next = op->Next;
op->Next->Prev = result;
result->Idx = 0;
return result;
}
//------------------------------------------------------------------------------
void CleanPolygon(const Path &in_poly, Path &out_poly, double distance) {
// distance = proximity in units/pixels below which vertices
// will be stripped. Default ~= sqrt(2).
size_t size = in_poly.size();
if (size == 0) {
out_poly.clear();
return;
}
OutPt *outPts = new OutPt[size];
for (size_t i = 0; i < size; ++i) {
outPts[i].Pt = in_poly[i];
outPts[i].Next = &outPts[(i + 1) % size];
outPts[i].Next->Prev = &outPts[i];
outPts[i].Idx = 0;
}
double distSqrd = distance * distance;
OutPt *op = &outPts[0];
while (op->Idx == 0 && op->Next != op->Prev) {
if (PointsAreClose(op->Pt, op->Prev->Pt, distSqrd)) {
op = ExcludeOp(op);
size--;
} else if (PointsAreClose(op->Prev->Pt, op->Next->Pt, distSqrd)) {
ExcludeOp(op->Next);
op = ExcludeOp(op);
size -= 2;
} else if (SlopesNearCollinear(op->Prev->Pt, op->Pt, op->Next->Pt,
distSqrd)) {
op = ExcludeOp(op);
size--;
} else {
op->Idx = 1;
op = op->Next;
}
}
if (size < 3)
size = 0;
out_poly.resize(size);
for (size_t i = 0; i < size; ++i) {
out_poly[i] = op->Pt;
op = op->Next;
}
delete[] outPts;
}
//------------------------------------------------------------------------------
void CleanPolygon(Path &poly, double distance) {
CleanPolygon(poly, poly, distance);
}
//------------------------------------------------------------------------------
void CleanPolygons(const Paths &in_polys, Paths &out_polys, double distance) {
out_polys.resize(in_polys.size());
for (Paths::size_type i = 0; i < in_polys.size(); ++i)
CleanPolygon(in_polys[i], out_polys[i], distance);
}
//------------------------------------------------------------------------------
void CleanPolygons(Paths &polys, double distance) {
CleanPolygons(polys, polys, distance);
}
//------------------------------------------------------------------------------
void Minkowski(const Path &poly, const Path &path, Paths &solution, bool isSum,
bool isClosed) {
int delta = (isClosed ? 1 : 0);
size_t polyCnt = poly.size();
size_t pathCnt = path.size();
Paths pp;
pp.reserve(pathCnt);
if (isSum)
for (size_t i = 0; i < pathCnt; ++i) {
Path p;
p.reserve(polyCnt);
for (size_t j = 0; j < poly.size(); ++j)
p.push_back(IntPoint(path[i].X + poly[j].X, path[i].Y + poly[j].Y));
pp.push_back(p);
}
else
for (size_t i = 0; i < pathCnt; ++i) {
Path p;
p.reserve(polyCnt);
for (size_t j = 0; j < poly.size(); ++j)
p.push_back(IntPoint(path[i].X - poly[j].X, path[i].Y - poly[j].Y));
pp.push_back(p);
}
solution.clear();
solution.reserve((pathCnt + delta) * (polyCnt + 1));
for (size_t i = 0; i < pathCnt - 1 + delta; ++i)
for (size_t j = 0; j < polyCnt; ++j) {
Path quad;
quad.reserve(4);
quad.push_back(pp[i % pathCnt][j % polyCnt]);
quad.push_back(pp[(i + 1) % pathCnt][j % polyCnt]);
quad.push_back(pp[(i + 1) % pathCnt][(j + 1) % polyCnt]);
quad.push_back(pp[i % pathCnt][(j + 1) % polyCnt]);
if (!Orientation(quad))
ReversePath(quad);
solution.push_back(quad);
}
}
//------------------------------------------------------------------------------
void MinkowskiSum(const Path &pattern, const Path &path, Paths &solution,
bool pathIsClosed) {
Minkowski(pattern, path, solution, true, pathIsClosed);
Clipper c;
c.AddPaths(solution, ptSubject, true);
c.Execute(ctUnion, solution, pftNonZero, pftNonZero);
}
//------------------------------------------------------------------------------
void TranslatePath(const Path &input, Path &output, const IntPoint delta) {
// precondition: input != output
output.resize(input.size());
for (size_t i = 0; i < input.size(); ++i)
output[i] = IntPoint(input[i].X + delta.X, input[i].Y + delta.Y);
}
//------------------------------------------------------------------------------
void MinkowskiSum(const Path &pattern, const Paths &paths, Paths &solution,
bool pathIsClosed) {
Clipper c;
for (size_t i = 0; i < paths.size(); ++i) {
Paths tmp;
Minkowski(pattern, paths[i], tmp, true, pathIsClosed);
c.AddPaths(tmp, ptSubject, true);
if (pathIsClosed) {
Path tmp2;
TranslatePath(paths[i], tmp2, pattern[0]);
c.AddPath(tmp2, ptClip, true);
}
}
c.Execute(ctUnion, solution, pftNonZero, pftNonZero);
}
//------------------------------------------------------------------------------
void MinkowskiDiff(const Path &poly1, const Path &poly2, Paths &solution) {
Minkowski(poly1, poly2, solution, false, true);
Clipper c;
c.AddPaths(solution, ptSubject, true);
c.Execute(ctUnion, solution, pftNonZero, pftNonZero);
}
//------------------------------------------------------------------------------
enum NodeType { ntAny, ntOpen, ntClosed };
void AddPolyNodeToPaths(const PolyNode &polynode, NodeType nodetype,
Paths &paths) {
bool match = true;
if (nodetype == ntClosed)
match = !polynode.IsOpen();
else if (nodetype == ntOpen)
return;
if (!polynode.Contour.empty() && match)
paths.push_back(polynode.Contour);
for (int i = 0; i < polynode.ChildCount(); ++i)
AddPolyNodeToPaths(*polynode.Childs[i], nodetype, paths);
}
//------------------------------------------------------------------------------
void PolyTreeToPaths(const PolyTree &polytree, Paths &paths) {
paths.resize(0);
paths.reserve(polytree.Total());
AddPolyNodeToPaths(polytree, ntAny, paths);
}
//------------------------------------------------------------------------------
void ClosedPathsFromPolyTree(const PolyTree &polytree, Paths &paths) {
paths.resize(0);
paths.reserve(polytree.Total());
AddPolyNodeToPaths(polytree, ntClosed, paths);
}
//------------------------------------------------------------------------------
void OpenPathsFromPolyTree(PolyTree &polytree, Paths &paths) {
paths.resize(0);
paths.reserve(polytree.Total());
// Open paths are top level only, so ...
for (int i = 0; i < polytree.ChildCount(); ++i)
if (polytree.Childs[i]->IsOpen())
paths.push_back(polytree.Childs[i]->Contour);
}
//------------------------------------------------------------------------------
std::ostream &operator<<(std::ostream &s, const IntPoint &p) {
s << "(" << p.X << "," << p.Y << ")";
return s;
}
//------------------------------------------------------------------------------
std::ostream &operator<<(std::ostream &s, const Path &p) {
if (p.empty())
return s;
Path::size_type last = p.size() - 1;
for (Path::size_type i = 0; i < last; i++)
s << "(" << p[i].X << "," << p[i].Y << "), ";
s << "(" << p[last].X << "," << p[last].Y << ")\n";
return s;
}
//------------------------------------------------------------------------------
std::ostream &operator<<(std::ostream &s, const Paths &p) {
for (Paths::size_type i = 0; i < p.size(); i++)
s << p[i];
s << "\n";
return s;
}
//------------------------------------------------------------------------------
} // ClipperLib namespace
/*******************************************************************************
* *
* Author : Angus Johnson *
* Version : 6.4.2 *
* Date : 27 February 2017 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2017 *
* *
* License: *
* Use, modification & distribution is subject to Boost Software License Ver 1. *
* http://www.boost.org/LICENSE_1_0.txt *
* *
* Attributions: *
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
* "A generic solution to polygon clipping" *
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
* http://portal.acm.org/citation.cfm?id=129906 *
* *
* Computer graphics and geometric modeling: implementation and algorithms *
* By Max K. Agoston *
* Springer; 1 edition (January 4, 2005) *
* http://books.google.com/books?q=vatti+clipping+agoston *
* *
* See also: *
* "Polygon Offsetting by Computing Winding Numbers" *
* Paper no. DETC2005-85513 pp. 565-575 *
* ASME 2005 International Design Engineering Technical Conferences *
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
* September 24-28, 2005 , Long Beach, California, USA *
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
* *
*******************************************************************************/
#ifndef clipper_hpp
#define clipper_hpp
#define CLIPPER_VERSION "6.4.2"
// use_int32: When enabled 32bit ints are used instead of 64bit ints. This
// improve performance but coordinate values are limited to the range +/- 46340
//#define use_int32
// use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance.
//#define use_xyz
// use_lines: Enables line clipping. Adds a very minor cost to performance.
#define use_lines
// use_deprecated: Enables temporary support for the obsolete functions
//#define use_deprecated
#include <cstdlib>
#include <cstring>
#include <functional>
#include <list>
#include <ostream>
#include <queue>
#include <set>
#include <stdexcept>
#include <vector>
namespace ClipperLib {
enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor };
enum PolyType { ptSubject, ptClip };
// By far the most widely used winding rules for polygon filling are
// EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32)
// Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL)
// see http://glprogramming.com/red/chapter11.html
enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative };
#ifdef use_int32
typedef int cInt;
static cInt const loRange = 0x7FFF;
static cInt const hiRange = 0x7FFF;
#else
typedef signed long long cInt;
static cInt const loRange = 0x3FFFFFFF;
static cInt const hiRange = 0x3FFFFFFFFFFFFFFFLL;
typedef signed long long long64; // used by Int128 class
typedef unsigned long long ulong64;
#endif
struct IntPoint {
cInt X;
cInt Y;
#ifdef use_xyz
cInt Z;
IntPoint(cInt x = 0, cInt y = 0, cInt z = 0) : X(x), Y(y), Z(z){};
#else
IntPoint(cInt x = 0, cInt y = 0) : X(x), Y(y){};
#endif
friend inline bool operator==(const IntPoint &a, const IntPoint &b) {
return a.X == b.X && a.Y == b.Y;
}
friend inline bool operator!=(const IntPoint &a, const IntPoint &b) {
return a.X != b.X || a.Y != b.Y;
}
};
//------------------------------------------------------------------------------
typedef std::vector<IntPoint> Path;
typedef std::vector<Path> Paths;
inline Path &operator<<(Path &poly, const IntPoint &p) {
poly.push_back(p);
return poly;
}
inline Paths &operator<<(Paths &polys, const Path &p) {
polys.push_back(p);
return polys;
}
std::ostream &operator<<(std::ostream &s, const IntPoint &p);
std::ostream &operator<<(std::ostream &s, const Path &p);
std::ostream &operator<<(std::ostream &s, const Paths &p);
struct DoublePoint {
double X;
double Y;
DoublePoint(double x = 0, double y = 0) : X(x), Y(y) {}
DoublePoint(IntPoint ip) : X((double)ip.X), Y((double)ip.Y) {}
};
//------------------------------------------------------------------------------
#ifdef use_xyz
typedef void (*ZFillCallback)(IntPoint &e1bot, IntPoint &e1top, IntPoint &e2bot,
IntPoint &e2top, IntPoint &pt);
#endif
enum InitOptions {
ioReverseSolution = 1,
ioStrictlySimple = 2,
ioPreserveCollinear = 4
};
enum JoinType { jtSquare, jtRound, jtMiter };
enum EndType {
etClosedPolygon,
etClosedLine,
etOpenButt,
etOpenSquare,
etOpenRound
};
class PolyNode;
typedef std::vector<PolyNode *> PolyNodes;
class PolyNode {
public:
PolyNode();
virtual ~PolyNode(){};
Path Contour;
PolyNodes Childs;
PolyNode *Parent;
PolyNode *GetNext() const;
bool IsHole() const;
bool IsOpen() const;
int ChildCount() const;
private:
// PolyNode& operator =(PolyNode& other);
unsigned Index; // node index in Parent.Childs
bool m_IsOpen;
JoinType m_jointype;
EndType m_endtype;
PolyNode *GetNextSiblingUp() const;
void AddChild(PolyNode &child);
friend class Clipper; // to access Index
friend class ClipperOffset;
};
class PolyTree : public PolyNode {
public:
~PolyTree() { Clear(); };
PolyNode *GetFirst() const;
void Clear();
int Total() const;
private:
// PolyTree& operator =(PolyTree& other);
PolyNodes AllNodes;
friend class Clipper; // to access AllNodes
};
bool Orientation(const Path &poly);
double Area(const Path &poly);
int PointInPolygon(const IntPoint &pt, const Path &path);
void SimplifyPolygon(const Path &in_poly, Paths &out_polys,
PolyFillType fillType = pftEvenOdd);
void SimplifyPolygons(const Paths &in_polys, Paths &out_polys,
PolyFillType fillType = pftEvenOdd);
void SimplifyPolygons(Paths &polys, PolyFillType fillType = pftEvenOdd);
void CleanPolygon(const Path &in_poly, Path &out_poly, double distance = 1.415);
void CleanPolygon(Path &poly, double distance = 1.415);
void CleanPolygons(const Paths &in_polys, Paths &out_polys,
double distance = 1.415);
void CleanPolygons(Paths &polys, double distance = 1.415);
void MinkowskiSum(const Path &pattern, const Path &path, Paths &solution,
bool pathIsClosed);
void MinkowskiSum(const Path &pattern, const Paths &paths, Paths &solution,
bool pathIsClosed);
void MinkowskiDiff(const Path &poly1, const Path &poly2, Paths &solution);
void PolyTreeToPaths(const PolyTree &polytree, Paths &paths);
void ClosedPathsFromPolyTree(const PolyTree &polytree, Paths &paths);
void OpenPathsFromPolyTree(PolyTree &polytree, Paths &paths);
void ReversePath(Path &p);
void ReversePaths(Paths &p);
struct IntRect {
cInt left;
cInt top;
cInt right;
cInt bottom;
};
// enums that are used internally ...
enum EdgeSide { esLeft = 1, esRight = 2 };
// forward declarations (for stuff used internally) ...
struct TEdge;
struct IntersectNode;
struct LocalMinimum;
struct OutPt;
struct OutRec;
struct Join;
typedef std::vector<OutRec *> PolyOutList;
typedef std::vector<TEdge *> EdgeList;
typedef std::vector<Join *> JoinList;
typedef std::vector<IntersectNode *> IntersectList;
//------------------------------------------------------------------------------
// ClipperBase is the ancestor to the Clipper class. It should not be
// instantiated directly. This class simply abstracts the conversion of sets of
// polygon coordinates into edge objects that are stored in a LocalMinima list.
class ClipperBase {
public:
ClipperBase();
virtual ~ClipperBase();
virtual bool AddPath(const Path &pg, PolyType PolyTyp, bool Closed);
bool AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed);
virtual void Clear();
IntRect GetBounds();
bool PreserveCollinear() { return m_PreserveCollinear; };
void PreserveCollinear(bool value) { m_PreserveCollinear = value; };
protected:
void DisposeLocalMinimaList();
TEdge *AddBoundsToLML(TEdge *e, bool IsClosed);
virtual void Reset();
TEdge *ProcessBound(TEdge *E, bool IsClockwise);
void InsertScanbeam(const cInt Y);
bool PopScanbeam(cInt &Y);
bool LocalMinimaPending();
bool PopLocalMinima(cInt Y, const LocalMinimum *&locMin);
OutRec *CreateOutRec();
void DisposeAllOutRecs();
void DisposeOutRec(PolyOutList::size_type index);
void SwapPositionsInAEL(TEdge *edge1, TEdge *edge2);
void DeleteFromAEL(TEdge *e);
void UpdateEdgeIntoAEL(TEdge *&e);
typedef std::vector<LocalMinimum> MinimaList;
MinimaList::iterator m_CurrentLM;
MinimaList m_MinimaList;
bool m_UseFullRange;
EdgeList m_edges;
bool m_PreserveCollinear;
bool m_HasOpenPaths;
PolyOutList m_PolyOuts;
TEdge *m_ActiveEdges;
typedef std::priority_queue<cInt> ScanbeamList;
ScanbeamList m_Scanbeam;
};
//------------------------------------------------------------------------------
class Clipper : public virtual ClipperBase {
public:
Clipper(int initOptions = 0);
bool Execute(ClipType clipType, Paths &solution,
PolyFillType fillType = pftEvenOdd);
bool Execute(ClipType clipType, Paths &solution, PolyFillType subjFillType,
PolyFillType clipFillType);
bool Execute(ClipType clipType, PolyTree &polytree,
PolyFillType fillType = pftEvenOdd);
bool Execute(ClipType clipType, PolyTree &polytree, PolyFillType subjFillType,
PolyFillType clipFillType);
bool ReverseSolution() { return m_ReverseOutput; };
void ReverseSolution(bool value) { m_ReverseOutput = value; };
bool StrictlySimple() { return m_StrictSimple; };
void StrictlySimple(bool value) { m_StrictSimple = value; };
// set the callback function for z value filling on intersections (otherwise Z
// is 0)
#ifdef use_xyz
void ZFillFunction(ZFillCallback zFillFunc);
#endif
protected:
virtual bool ExecuteInternal();
private:
JoinList m_Joins;
JoinList m_GhostJoins;
IntersectList m_IntersectList;
ClipType m_ClipType;
typedef std::list<cInt> MaximaList;
MaximaList m_Maxima;
TEdge *m_SortedEdges;
bool m_ExecuteLocked;
PolyFillType m_ClipFillType;
PolyFillType m_SubjFillType;
bool m_ReverseOutput;
bool m_UsingPolyTree;
bool m_StrictSimple;
#ifdef use_xyz
ZFillCallback m_ZFill; // custom callback
#endif
void SetWindingCount(TEdge &edge);
bool IsEvenOddFillType(const TEdge &edge) const;
bool IsEvenOddAltFillType(const TEdge &edge) const;
void InsertLocalMinimaIntoAEL(const cInt botY);
void InsertEdgeIntoAEL(TEdge *edge, TEdge *startEdge);
void AddEdgeToSEL(TEdge *edge);
bool PopEdgeFromSEL(TEdge *&edge);
void CopyAELToSEL();
void DeleteFromSEL(TEdge *e);
void SwapPositionsInSEL(TEdge *edge1, TEdge *edge2);
bool IsContributing(const TEdge &edge) const;
bool IsTopHorz(const cInt XPos);
void DoMaxima(TEdge *e);
void ProcessHorizontals();
void ProcessHorizontal(TEdge *horzEdge);
void AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
OutPt *AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
OutRec *GetOutRec(int idx);
void AppendPolygon(TEdge *e1, TEdge *e2);
void IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &pt);
OutPt *AddOutPt(TEdge *e, const IntPoint &pt);
OutPt *GetLastOutPt(TEdge *e);
bool ProcessIntersections(const cInt topY);
void BuildIntersectList(const cInt topY);
void ProcessIntersectList();
void ProcessEdgesAtTopOfScanbeam(const cInt topY);
void BuildResult(Paths &polys);
void BuildResult2(PolyTree &polytree);
void SetHoleState(TEdge *e, OutRec *outrec);
void DisposeIntersectNodes();
bool FixupIntersectionOrder();
void FixupOutPolygon(OutRec &outrec);
void FixupOutPolyline(OutRec &outrec);
bool IsHole(TEdge *e);
bool FindOwnerFromSplitRecs(OutRec &outRec, OutRec *&currOrfl);
void FixHoleLinkage(OutRec &outrec);
void AddJoin(OutPt *op1, OutPt *op2, const IntPoint offPt);
void ClearJoins();
void ClearGhostJoins();
void AddGhostJoin(OutPt *op, const IntPoint offPt);
bool JoinPoints(Join *j, OutRec *outRec1, OutRec *outRec2);
void JoinCommonEdges();
void DoSimplePolygons();
void FixupFirstLefts1(OutRec *OldOutRec, OutRec *NewOutRec);
void FixupFirstLefts2(OutRec *InnerOutRec, OutRec *OuterOutRec);
void FixupFirstLefts3(OutRec *OldOutRec, OutRec *NewOutRec);
#ifdef use_xyz
void SetZ(IntPoint &pt, TEdge &e1, TEdge &e2);
#endif
};
//------------------------------------------------------------------------------
class ClipperOffset {
public:
ClipperOffset(double miterLimit = 2.0, double roundPrecision = 0.25);
~ClipperOffset();
void AddPath(const Path &path, JoinType joinType, EndType endType);
void AddPaths(const Paths &paths, JoinType joinType, EndType endType);
void Execute(Paths &solution, double delta);
void Execute(PolyTree &solution, double delta);
void Clear();
double MiterLimit;
double ArcTolerance;
private:
Paths m_destPolys;
Path m_srcPoly;
Path m_destPoly;
std::vector<DoublePoint> m_normals;
double m_delta, m_sinA, m_sin, m_cos;
double m_miterLim, m_StepsPerRad;
IntPoint m_lowest;
PolyNode m_polyNodes;
void FixOrientations();
void DoOffset(double delta);
void OffsetPoint(int j, int &k, JoinType jointype);
void DoSquare(int j, int k);
void DoMiter(int j, int k, double r);
void DoRound(int j, int k);
};
//------------------------------------------------------------------------------
class clipperException : public std::exception {
public:
clipperException(const char *description) : m_descr(description) {}
virtual ~clipperException() throw() {}
virtual const char *what() const throw() { return m_descr.c_str(); }
private:
std::string m_descr;
};
//------------------------------------------------------------------------------
} // ClipperLib namespace
#endif // clipper_hpp
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ocr_cls_process.h"
#include <cmath>
#include <cstring>
#include <fstream>
#include <iostream>
#include <iostream>
#include <vector>
const std::vector<int> CLS_IMAGE_SHAPE = {3, 48, 192};
cv::Mat cls_resize_img(const cv::Mat &img) {
int imgC = CLS_IMAGE_SHAPE[0];
int imgW = CLS_IMAGE_SHAPE[2];
int imgH = CLS_IMAGE_SHAPE[1];
float ratio = float(img.cols) / float(img.rows);
int resize_w = 0;
if (ceilf(imgH * ratio) > imgW)
resize_w = imgW;
else
resize_w = int(ceilf(imgH * ratio));
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
cv::INTER_CUBIC);
if (resize_w < imgW) {
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, int(imgW - resize_w),
cv::BORDER_CONSTANT, {0, 0, 0});
}
return resize_img;
}
\ No newline at end of file
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "common.h"
#include <opencv2/opencv.hpp>
#include <vector>
extern const std::vector<int> CLS_IMAGE_SHAPE;
cv::Mat cls_resize_img(const cv::Mat &img);
\ No newline at end of file
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ocr_crnn_process.h"
#include <cmath>
#include <cstring>
#include <fstream>
#include <iostream>
#include <iostream>
#include <vector>
const std::string CHARACTER_TYPE = "ch";
const int MAX_DICT_LENGTH = 6624;
const std::vector<int> REC_IMAGE_SHAPE = {3, 32, 320};
static cv::Mat crnn_resize_norm_img(cv::Mat img, float wh_ratio) {
int imgC = REC_IMAGE_SHAPE[0];
int imgW = REC_IMAGE_SHAPE[2];
int imgH = REC_IMAGE_SHAPE[1];
if (CHARACTER_TYPE == "ch")
imgW = int(32 * wh_ratio);
float ratio = float(img.cols) / float(img.rows);
int resize_w = 0;
if (ceilf(imgH * ratio) > imgW)
resize_w = imgW;
else
resize_w = int(ceilf(imgH * ratio));
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
cv::INTER_CUBIC);
resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);
for (int h = 0; h < resize_img.rows; h++) {
for (int w = 0; w < resize_img.cols; w++) {
resize_img.at<cv::Vec3f>(h, w)[0] =
(resize_img.at<cv::Vec3f>(h, w)[0] - 0.5) * 2;
resize_img.at<cv::Vec3f>(h, w)[1] =
(resize_img.at<cv::Vec3f>(h, w)[1] - 0.5) * 2;
resize_img.at<cv::Vec3f>(h, w)[2] =
(resize_img.at<cv::Vec3f>(h, w)[2] - 0.5) * 2;
}
}
cv::Mat dist;
cv::copyMakeBorder(resize_img, dist, 0, 0, 0, int(imgW - resize_w),
cv::BORDER_CONSTANT, {0, 0, 0});
return dist;
}
cv::Mat crnn_resize_img(const cv::Mat &img, float wh_ratio) {
int imgC = REC_IMAGE_SHAPE[0];
int imgW = REC_IMAGE_SHAPE[2];
int imgH = REC_IMAGE_SHAPE[1];
if (CHARACTER_TYPE == "ch") {
imgW = int(32 * wh_ratio);
}
float ratio = float(img.cols) / float(img.rows);
int resize_w = 0;
if (ceilf(imgH * ratio) > imgW)
resize_w = imgW;
else
resize_w = int(ceilf(imgH * ratio));
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(resize_w, imgH));
return resize_img;
}
cv::Mat get_rotate_crop_image(const cv::Mat &srcimage,
const std::vector<std::vector<int>> &box) {
std::vector<std::vector<int>> points = box;
int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
int left = int(*std::min_element(x_collect, x_collect + 4));
int right = int(*std::max_element(x_collect, x_collect + 4));
int top = int(*std::min_element(y_collect, y_collect + 4));
int bottom = int(*std::max_element(y_collect, y_collect + 4));
cv::Mat img_crop;
srcimage(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
for (int i = 0; i < points.size(); i++) {
points[i][0] -= left;
points[i][1] -= top;
}
int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
pow(points[0][1] - points[1][1], 2)));
int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
pow(points[0][1] - points[3][1], 2)));
cv::Point2f pts_std[4];
pts_std[0] = cv::Point2f(0., 0.);
pts_std[1] = cv::Point2f(img_crop_width, 0.);
pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
pts_std[3] = cv::Point2f(0.f, img_crop_height);
cv::Point2f pointsf[4];
pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
cv::Mat dst_img;
cv::warpPerspective(img_crop, dst_img, M,
cv::Size(img_crop_width, img_crop_height),
cv::BORDER_REPLICATE);
if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
/*
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
cv::transpose(dst_img, srcCopy);
cv::flip(srcCopy, srcCopy, 0);
return srcCopy;
*/
cv::transpose(dst_img, dst_img);
cv::flip(dst_img, dst_img, 0);
return dst_img;
} else {
return dst_img;
}
}
//
// Created by fujiayi on 2020/7/3.
//
#pragma once
#include "common.h"
#include <opencv2/opencv.hpp>
#include <vector>
extern const std::vector<int> REC_IMAGE_SHAPE;
cv::Mat get_rotate_crop_image(const cv::Mat &srcimage,
const std::vector<std::vector<int>> &box);
cv::Mat crnn_resize_img(const cv::Mat &img, float wh_ratio);
template <class ForwardIterator>
inline size_t argmax(ForwardIterator first, ForwardIterator last) {
return std::distance(first, std::max_element(first, last));
}
\ No newline at end of file
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ocr_clipper.hpp"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
#include <math.h>
#include <vector>
static void getcontourarea(float **box, float unclip_ratio, float &distance) {
int pts_num = 4;
float area = 0.0f;
float dist = 0.0f;
for (int i = 0; i < pts_num; i++) {
area += box[i][0] * box[(i + 1) % pts_num][1] -
box[i][1] * box[(i + 1) % pts_num][0];
dist += sqrtf((box[i][0] - box[(i + 1) % pts_num][0]) *
(box[i][0] - box[(i + 1) % pts_num][0]) +
(box[i][1] - box[(i + 1) % pts_num][1]) *
(box[i][1] - box[(i + 1) % pts_num][1]));
}
area = fabs(float(area / 2.0));
distance = area * unclip_ratio / dist;
}
static cv::RotatedRect unclip(float **box) {
float unclip_ratio = 2.0;
float distance = 1.0;
getcontourarea(box, unclip_ratio, distance);
ClipperLib::ClipperOffset offset;
ClipperLib::Path p;
p << ClipperLib::IntPoint(int(box[0][0]), int(box[0][1]))
<< ClipperLib::IntPoint(int(box[1][0]), int(box[1][1]))
<< ClipperLib::IntPoint(int(box[2][0]), int(box[2][1]))
<< ClipperLib::IntPoint(int(box[3][0]), int(box[3][1]));
offset.AddPath(p, ClipperLib::jtRound, ClipperLib::etClosedPolygon);
ClipperLib::Paths soln;
offset.Execute(soln, distance);
std::vector<cv::Point2f> points;
for (int j = 0; j < soln.size(); j++) {
for (int i = 0; i < soln[soln.size() - 1].size(); i++) {
points.emplace_back(soln[j][i].X, soln[j][i].Y);
}
}
cv::RotatedRect res = cv::minAreaRect(points);
return res;
}
static float **Mat2Vec(cv::Mat mat) {
auto **array = new float *[mat.rows];
for (int i = 0; i < mat.rows; ++i) {
array[i] = new float[mat.cols];
}
for (int i = 0; i < mat.rows; ++i) {
for (int j = 0; j < mat.cols; ++j) {
array[i][j] = mat.at<float>(i, j);
}
}
return array;
}
static void quickSort(float **s, int l, int r) {
if (l < r) {
int i = l, j = r;
float x = s[l][0];
float *xp = s[l];
while (i < j) {
while (i < j && s[j][0] >= x) {
j--;
}
if (i < j) {
std::swap(s[i++], s[j]);
}
while (i < j && s[i][0] < x) {
i++;
}
if (i < j) {
std::swap(s[j--], s[i]);
}
}
s[i] = xp;
quickSort(s, l, i - 1);
quickSort(s, i + 1, r);
}
}
static void quickSort_vector(std::vector<std::vector<int>> &box, int l, int r,
int axis) {
if (l < r) {
int i = l, j = r;
int x = box[l][axis];
std::vector<int> xp(box[l]);
while (i < j) {
while (i < j && box[j][axis] >= x) {
j--;
}
if (i < j) {
std::swap(box[i++], box[j]);
}
while (i < j && box[i][axis] < x) {
i++;
}
if (i < j) {
std::swap(box[j--], box[i]);
}
}
box[i] = xp;
quickSort_vector(box, l, i - 1, axis);
quickSort_vector(box, i + 1, r, axis);
}
}
static std::vector<std::vector<int>>
order_points_clockwise(std::vector<std::vector<int>> pts) {
std::vector<std::vector<int>> box = pts;
quickSort_vector(box, 0, int(box.size() - 1), 0);
std::vector<std::vector<int>> leftmost = {box[0], box[1]};
std::vector<std::vector<int>> rightmost = {box[2], box[3]};
if (leftmost[0][1] > leftmost[1][1]) {
std::swap(leftmost[0], leftmost[1]);
}
if (rightmost[0][1] > rightmost[1][1]) {
std::swap(rightmost[0], rightmost[1]);
}
std::vector<std::vector<int>> rect = {leftmost[0], rightmost[0], rightmost[1],
leftmost[1]};
return rect;
}
static float **get_mini_boxes(cv::RotatedRect box, float &ssid) {
ssid = box.size.width >= box.size.height ? box.size.height : box.size.width;
cv::Mat points;
cv::boxPoints(box, points);
// sorted box points
auto array = Mat2Vec(points);
quickSort(array, 0, 3);
float *idx1 = array[0], *idx2 = array[1], *idx3 = array[2], *idx4 = array[3];
if (array[3][1] <= array[2][1]) {
idx2 = array[3];
idx3 = array[2];
} else {
idx2 = array[2];
idx3 = array[3];
}
if (array[1][1] <= array[0][1]) {
idx1 = array[1];
idx4 = array[0];
} else {
idx1 = array[0];
idx4 = array[1];
}
array[0] = idx1;
array[1] = idx2;
array[2] = idx3;
array[3] = idx4;
return array;
}
template <class T> T clamp(T x, T min, T max) {
if (x > max) {
return max;
}
if (x < min) {
return min;
}
return x;
}
static float clampf(float x, float min, float max) {
if (x > max)
return max;
if (x < min)
return min;
return x;
}
float box_score_fast(float **box_array, cv::Mat pred) {
auto array = box_array;
int width = pred.cols;
int height = pred.rows;
float box_x[4] = {array[0][0], array[1][0], array[2][0], array[3][0]};
float box_y[4] = {array[0][1], array[1][1], array[2][1], array[3][1]};
int xmin = clamp(int(std::floorf(*(std::min_element(box_x, box_x + 4)))), 0,
width - 1);
int xmax = clamp(int(std::ceilf(*(std::max_element(box_x, box_x + 4)))), 0,
width - 1);
int ymin = clamp(int(std::floorf(*(std::min_element(box_y, box_y + 4)))), 0,
height - 1);
int ymax = clamp(int(std::ceilf(*(std::max_element(box_y, box_y + 4)))), 0,
height - 1);
cv::Mat mask;
mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);
cv::Point root_point[4];
root_point[0] = cv::Point(int(array[0][0]) - xmin, int(array[0][1]) - ymin);
root_point[1] = cv::Point(int(array[1][0]) - xmin, int(array[1][1]) - ymin);
root_point[2] = cv::Point(int(array[2][0]) - xmin, int(array[2][1]) - ymin);
root_point[3] = cv::Point(int(array[3][0]) - xmin, int(array[3][1]) - ymin);
const cv::Point *ppt[1] = {root_point};
int npt[] = {4};
cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));
cv::Mat croppedImg;
pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1))
.copyTo(croppedImg);
auto score = cv::mean(croppedImg, mask)[0];
return score;
}
std::vector<std::vector<std::vector<int>>>
boxes_from_bitmap(const cv::Mat &pred, const cv::Mat &bitmap) {
const int min_size = 3;
const int max_candidates = 1000;
const float box_thresh = 0.5;
int width = bitmap.cols;
int height = bitmap.rows;
std::vector<std::vector<cv::Point>> contours;
std::vector<cv::Vec4i> hierarchy;
cv::findContours(bitmap, contours, hierarchy, cv::RETR_LIST,
cv::CHAIN_APPROX_SIMPLE);
int num_contours =
contours.size() >= max_candidates ? max_candidates : contours.size();
std::vector<std::vector<std::vector<int>>> boxes;
for (int _i = 0; _i < num_contours; _i++) {
float ssid;
cv::RotatedRect box = cv::minAreaRect(contours[_i]);
auto array = get_mini_boxes(box, ssid);
auto box_for_unclip = array;
// end get_mini_box
if (ssid < min_size) {
continue;
}
float score;
score = box_score_fast(array, pred);
// end box_score_fast
if (score < box_thresh) {
continue;
}
// start for unclip
cv::RotatedRect points = unclip(box_for_unclip);
// end for unclip
cv::RotatedRect clipbox = points;
auto cliparray = get_mini_boxes(clipbox, ssid);
if (ssid < min_size + 2)
continue;
int dest_width = pred.cols;
int dest_height = pred.rows;
std::vector<std::vector<int>> intcliparray;
for (int num_pt = 0; num_pt < 4; num_pt++) {
std::vector<int> a{int(clampf(roundf(cliparray[num_pt][0] / float(width) *
float(dest_width)),
0, float(dest_width))),
int(clampf(roundf(cliparray[num_pt][1] /
float(height) * float(dest_height)),
0, float(dest_height)))};
intcliparray.emplace_back(std::move(a));
}
boxes.emplace_back(std::move(intcliparray));
} // end for
return boxes;
}
int _max(int a, int b) { return a >= b ? a : b; }
int _min(int a, int b) { return a >= b ? b : a; }
std::vector<std::vector<std::vector<int>>>
filter_tag_det_res(const std::vector<std::vector<std::vector<int>>> &o_boxes,
float ratio_h, float ratio_w, const cv::Mat &srcimg) {
int oriimg_h = srcimg.rows;
int oriimg_w = srcimg.cols;
std::vector<std::vector<std::vector<int>>> boxes{o_boxes};
std::vector<std::vector<std::vector<int>>> root_points;
for (int n = 0; n < boxes.size(); n++) {
boxes[n] = order_points_clockwise(boxes[n]);
for (int m = 0; m < boxes[0].size(); m++) {
boxes[n][m][0] /= ratio_w;
boxes[n][m][1] /= ratio_h;
boxes[n][m][0] = int(_min(_max(boxes[n][m][0], 0), oriimg_w - 1));
boxes[n][m][1] = int(_min(_max(boxes[n][m][1], 0), oriimg_h - 1));
}
}
for (int n = 0; n < boxes.size(); n++) {
int rect_width, rect_height;
rect_width = int(sqrt(pow(boxes[n][0][0] - boxes[n][1][0], 2) +
pow(boxes[n][0][1] - boxes[n][1][1], 2)));
rect_height = int(sqrt(pow(boxes[n][0][0] - boxes[n][3][0], 2) +
pow(boxes[n][0][1] - boxes[n][3][1], 2)));
if (rect_width <= 10 || rect_height <= 10)
continue;
root_points.push_back(boxes[n]);
}
return root_points;
}
\ No newline at end of file
//
// Created by fujiayi on 2020/7/2.
//
#pragma once
#include <opencv2/opencv.hpp>
#include <vector>
std::vector<std::vector<std::vector<int>>>
boxes_from_bitmap(const cv::Mat &pred, const cv::Mat &bitmap);
std::vector<std::vector<std::vector<int>>>
filter_tag_det_res(const std::vector<std::vector<std::vector<int>>> &o_boxes,
float ratio_h, float ratio_w, const cv::Mat &srcimg);
\ No newline at end of file
//
// Created by fujiayi on 2020/7/1.
//
#include "ocr_ppredictor.h"
#include "common.h"
#include "ocr_cls_process.h"
#include "ocr_crnn_process.h"
#include "ocr_db_post_process.h"
#include "preprocess.h"
namespace ppredictor {
OCR_PPredictor::OCR_PPredictor(const OCR_Config &config) : _config(config) {}
int OCR_PPredictor::init(const std::string &det_model_content,
const std::string &rec_model_content,
const std::string &cls_model_content) {
_det_predictor = std::unique_ptr<PPredictor>(
new PPredictor{_config.thread_num, NET_OCR, _config.mode});
_det_predictor->init_nb(det_model_content);
_rec_predictor = std::unique_ptr<PPredictor>(
new PPredictor{_config.thread_num, NET_OCR_INTERNAL, _config.mode});
_rec_predictor->init_nb(rec_model_content);
_cls_predictor = std::unique_ptr<PPredictor>(
new PPredictor{_config.thread_num, NET_OCR_INTERNAL, _config.mode});
_cls_predictor->init_nb(cls_model_content);
return RETURN_OK;
}
int OCR_PPredictor::init_from_file(const std::string &det_model_path,
const std::string &rec_model_path,
const std::string &cls_model_path) {
_det_predictor = std::unique_ptr<PPredictor>(
new PPredictor{_config.thread_num, NET_OCR, _config.mode});
_det_predictor->init_from_file(det_model_path);
_rec_predictor = std::unique_ptr<PPredictor>(
new PPredictor{_config.thread_num, NET_OCR_INTERNAL, _config.mode});
_rec_predictor->init_from_file(rec_model_path);
_cls_predictor = std::unique_ptr<PPredictor>(
new PPredictor{_config.thread_num, NET_OCR_INTERNAL, _config.mode});
_cls_predictor->init_from_file(cls_model_path);
return RETURN_OK;
}
/**
* for debug use, show result of First Step
* @param filter_boxes
* @param boxes
* @param srcimg
*/
static void
visual_img(const std::vector<std::vector<std::vector<int>>> &filter_boxes,
const std::vector<std::vector<std::vector<int>>> &boxes,
const cv::Mat &srcimg) {
// visualization
cv::Point rook_points[filter_boxes.size()][4];
for (int n = 0; n < filter_boxes.size(); n++) {
for (int m = 0; m < filter_boxes[0].size(); m++) {
rook_points[n][m] =
cv::Point(int(filter_boxes[n][m][0]), int(filter_boxes[n][m][1]));
}
}
cv::Mat img_vis;
srcimg.copyTo(img_vis);
for (int n = 0; n < boxes.size(); n++) {
const cv::Point *ppt[1] = {rook_points[n]};
int npt[] = {4};
cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
}
// 调试用,自行替换需要修改的路径
cv::imwrite("/sdcard/1/vis.png", img_vis);
}
std::vector<OCRPredictResult>
OCR_PPredictor::infer_ocr(const std::vector<int64_t> &dims,
const float *input_data, int input_len, int net_flag,
cv::Mat &origin) {
PredictorInput input = _det_predictor->get_first_input();
input.set_dims(dims);
input.set_data(input_data, input_len);
std::vector<PredictorOutput> results = _det_predictor->infer();
PredictorOutput &res = results.at(0);
std::vector<std::vector<std::vector<int>>> filtered_box = calc_filtered_boxes(
res.get_float_data(), res.get_size(), (int)dims[2], (int)dims[3], origin);
LOGI("Filter_box size %ld", filtered_box.size());
return infer_rec(filtered_box, origin);
}
std::vector<OCRPredictResult> OCR_PPredictor::infer_rec(
const std::vector<std::vector<std::vector<int>>> &boxes,
const cv::Mat &origin_img) {
std::vector<float> mean = {0.5f, 0.5f, 0.5f};
std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
std::vector<int64_t> dims = {1, 3, 0, 0};
std::vector<OCRPredictResult> ocr_results;
PredictorInput input = _rec_predictor->get_first_input();
for (auto bp = boxes.crbegin(); bp != boxes.crend(); ++bp) {
const std::vector<std::vector<int>> &box = *bp;
cv::Mat crop_img = get_rotate_crop_image(origin_img, box);
crop_img = infer_cls(crop_img);
float wh_ratio = float(crop_img.cols) / float(crop_img.rows);
cv::Mat input_image = crnn_resize_img(crop_img, wh_ratio);
input_image.convertTo(input_image, CV_32FC3, 1 / 255.0f);
const float *dimg = reinterpret_cast<const float *>(input_image.data);
int input_size = input_image.rows * input_image.cols;
dims[2] = input_image.rows;
dims[3] = input_image.cols;
input.set_dims(dims);
neon_mean_scale(dimg, input.get_mutable_float_data(), input_size, mean,
scale);
std::vector<PredictorOutput> results = _rec_predictor->infer();
const float *predict_batch = results.at(0).get_float_data();
const std::vector<int64_t> predict_shape = results.at(0).get_shape();
OCRPredictResult res;
// ctc decode
int argmax_idx;
int last_index = 0;
float score = 0.f;
int count = 0;
float max_value = 0.0f;
for (int n = 0; n < predict_shape[1]; n++) {
argmax_idx = int(argmax(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]]));
max_value =
float(*std::max_element(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]]));
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
score += max_value;
count += 1;
res.word_index.push_back(argmax_idx);
}
last_index = argmax_idx;
}
score /= count;
if (res.word_index.empty()) {
continue;
}
res.score = score;
res.points = box;
ocr_results.emplace_back(std::move(res));
}
LOGI("ocr_results finished %lu", ocr_results.size());
return ocr_results;
}
cv::Mat OCR_PPredictor::infer_cls(const cv::Mat &img, float thresh) {
std::vector<float> mean = {0.5f, 0.5f, 0.5f};
std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
std::vector<int64_t> dims = {1, 3, 0, 0};
std::vector<OCRPredictResult> ocr_results;
PredictorInput input = _cls_predictor->get_first_input();
cv::Mat input_image = cls_resize_img(img);
input_image.convertTo(input_image, CV_32FC3, 1 / 255.0f);
const float *dimg = reinterpret_cast<const float *>(input_image.data);
int input_size = input_image.rows * input_image.cols;
dims[2] = input_image.rows;
dims[3] = input_image.cols;
input.set_dims(dims);
neon_mean_scale(dimg, input.get_mutable_float_data(), input_size, mean,
scale);
std::vector<PredictorOutput> results = _cls_predictor->infer();
const float *scores = results.at(0).get_float_data();
float score = 0;
int label = 0;
for (int64_t i = 0; i < results.at(0).get_size(); i++) {
LOGI("output scores [%f]", scores[i]);
if (scores[i] > score) {
score = scores[i];
label = i;
}
}
cv::Mat srcimg;
img.copyTo(srcimg);
if (label % 2 == 1 && score > thresh) {
cv::rotate(srcimg, srcimg, 1);
}
return srcimg;
}
std::vector<std::vector<std::vector<int>>>
OCR_PPredictor::calc_filtered_boxes(const float *pred, int pred_size,
int output_height, int output_width,
const cv::Mat &origin) {
const double threshold = 0.3;
const double maxvalue = 1;
cv::Mat pred_map = cv::Mat::zeros(output_height, output_width, CV_32F);
memcpy(pred_map.data, pred, pred_size * sizeof(float));
cv::Mat cbuf_map;
pred_map.convertTo(cbuf_map, CV_8UC1);
cv::Mat bit_map;
cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
std::vector<std::vector<std::vector<int>>> boxes =
boxes_from_bitmap(pred_map, bit_map);
float ratio_h = output_height * 1.0f / origin.rows;
float ratio_w = output_width * 1.0f / origin.cols;
std::vector<std::vector<std::vector<int>>> filter_boxes =
filter_tag_det_res(boxes, ratio_h, ratio_w, origin);
return filter_boxes;
}
std::vector<int>
OCR_PPredictor::postprocess_rec_word_index(const PredictorOutput &res) {
const int *rec_idx = res.get_int_data();
const std::vector<std::vector<uint64_t>> rec_idx_lod = res.get_lod();
std::vector<int> pred_idx;
for (int n = int(rec_idx_lod[0][0]); n < int(rec_idx_lod[0][1] * 2); n += 2) {
pred_idx.emplace_back(rec_idx[n]);
}
return pred_idx;
}
float OCR_PPredictor::postprocess_rec_score(const PredictorOutput &res) {
const float *predict_batch = res.get_float_data();
const std::vector<int64_t> predict_shape = res.get_shape();
const std::vector<std::vector<uint64_t>> predict_lod = res.get_lod();
int blank = predict_shape[1];
float score = 0.f;
int count = 0;
for (int n = predict_lod[0][0]; n < predict_lod[0][1] - 1; n++) {
int argmax_idx = argmax(predict_batch + n * predict_shape[1],
predict_batch + (n + 1) * predict_shape[1]);
float max_value = predict_batch[n * predict_shape[1] + argmax_idx];
if (blank - 1 - argmax_idx > 1e-5) {
score += max_value;
count += 1;
}
}
if (count == 0) {
LOGE("calc score count 0");
} else {
score /= count;
}
LOGI("calc score: %f", score);
return score;
}
NET_TYPE OCR_PPredictor::get_net_flag() const { return NET_OCR; }
}
\ No newline at end of file
//
// Created by fujiayi on 2020/7/1.
//
#pragma once
#include "ppredictor.h"
#include <opencv2/opencv.hpp>
#include <paddle_api.h>
#include <string>
namespace ppredictor {
/**
* Config
*/
struct OCR_Config {
int thread_num = 4; // Thread num
paddle::lite_api::PowerMode mode =
paddle::lite_api::LITE_POWER_HIGH; // PaddleLite Mode
};
/**
* PolyGone Result
*/
struct OCRPredictResult {
std::vector<int> word_index;
std::vector<std::vector<int>> points;
float score;
};
/**
* OCR there are 2 models
* 1. First model(det),select polygones to show where are the texts
* 2. crop from the origin images, use these polygones to infer
*/
class OCR_PPredictor : public PPredictor_Interface {
public:
OCR_PPredictor(const OCR_Config &config);
virtual ~OCR_PPredictor() {}
/**
* 初始化二个模型的Predictor
* @param det_model_content
* @param rec_model_content
* @return
*/
int init(const std::string &det_model_content,
const std::string &rec_model_content,
const std::string &cls_model_content);
int init_from_file(const std::string &det_model_path,
const std::string &rec_model_path,
const std::string &cls_model_path);
/**
* Return OCR result
* @param dims
* @param input_data
* @param input_len
* @param net_flag
* @param origin
* @return
*/
virtual std::vector<OCRPredictResult>
infer_ocr(const std::vector<int64_t> &dims, const float *input_data,
int input_len, int net_flag, cv::Mat &origin);
virtual NET_TYPE get_net_flag() const;
private:
/**
* calcul Polygone from the result image of first model
* @param pred
* @param output_height
* @param output_width
* @param origin
* @return
*/
std::vector<std::vector<std::vector<int>>>
calc_filtered_boxes(const float *pred, int pred_size, int output_height,
int output_width, const cv::Mat &origin);
/**
* infer for second model
*
* @param boxes
* @param origin
* @return
*/
std::vector<OCRPredictResult>
infer_rec(const std::vector<std::vector<std::vector<int>>> &boxes,
const cv::Mat &origin);
/**
* infer for cls model
*
* @param boxes
* @param origin
* @return
*/
cv::Mat infer_cls(const cv::Mat &origin, float thresh = 0.9);
/**
* Postprocess or sencod model to extract text
* @param res
* @return
*/
std::vector<int> postprocess_rec_word_index(const PredictorOutput &res);
/**
* calculate confidence of second model text result
* @param res
* @return
*/
float postprocess_rec_score(const PredictorOutput &res);
std::unique_ptr<PPredictor> _det_predictor;
std::unique_ptr<PPredictor> _rec_predictor;
std::unique_ptr<PPredictor> _cls_predictor;
OCR_Config _config;
};
}
#include "ppredictor.h"
#include "common.h"
namespace ppredictor {
PPredictor::PPredictor(int thread_num, int net_flag,
paddle::lite_api::PowerMode mode)
: _thread_num(thread_num), _net_flag(net_flag), _mode(mode) {}
int PPredictor::init_nb(const std::string &model_content) {
paddle::lite_api::MobileConfig config;
config.set_model_from_buffer(model_content);
return _init(config);
}
int PPredictor::init_from_file(const std::string &model_content) {
paddle::lite_api::MobileConfig config;
config.set_model_from_file(model_content);
return _init(config);
}
template <typename ConfigT> int PPredictor::_init(ConfigT &config) {
config.set_threads(_thread_num);
config.set_power_mode(_mode);
_predictor = paddle::lite_api::CreatePaddlePredictor(config);
LOGI("paddle instance created");
return RETURN_OK;
}
PredictorInput PPredictor::get_input(int index) {
PredictorInput input{_predictor->GetInput(index), index, _net_flag};
_is_input_get = true;
return input;
}
std::vector<PredictorInput> PPredictor::get_inputs(int num) {
std::vector<PredictorInput> results;
for (int i = 0; i < num; i++) {
results.emplace_back(get_input(i));
}
return results;
}
PredictorInput PPredictor::get_first_input() { return get_input(0); }
std::vector<PredictorOutput> PPredictor::infer() {
LOGI("infer Run start %d", _net_flag);
std::vector<PredictorOutput> results;
if (!_is_input_get) {
return results;
}
_predictor->Run();
LOGI("infer Run end");
for (int i = 0; i < _predictor->GetOutputNames().size(); i++) {
std::unique_ptr<const paddle::lite_api::Tensor> output_tensor =
_predictor->GetOutput(i);
LOGI("output tensor[%d] size %ld", i, product(output_tensor->shape()));
PredictorOutput result{std::move(output_tensor), i, _net_flag};
results.emplace_back(std::move(result));
}
return results;
}
NET_TYPE PPredictor::get_net_flag() const { return (NET_TYPE)_net_flag; }
}
\ No newline at end of file
#pragma once
#include "paddle_api.h"
#include "predictor_input.h"
#include "predictor_output.h"
namespace ppredictor {
/**
* PaddleLite Preditor Common Interface
*/
class PPredictor_Interface {
public:
virtual ~PPredictor_Interface() {}
virtual NET_TYPE get_net_flag() const = 0;
};
/**
* Common Predictor
*/
class PPredictor : public PPredictor_Interface {
public:
PPredictor(
int thread_num, int net_flag = 0,
paddle::lite_api::PowerMode mode = paddle::lite_api::LITE_POWER_HIGH);
virtual ~PPredictor() {}
/**
* init paddlitelite opt model,nb format ,or use ini_paddle
* @param model_content
* @return 0
*/
virtual int init_nb(const std::string &model_content);
virtual int init_from_file(const std::string &model_content);
std::vector<PredictorOutput> infer();
std::shared_ptr<paddle::lite_api::PaddlePredictor> get_predictor() {
return _predictor;
}
virtual std::vector<PredictorInput> get_inputs(int num);
virtual PredictorInput get_input(int index);
virtual PredictorInput get_first_input();
virtual NET_TYPE get_net_flag() const;
protected:
template <typename ConfigT> int _init(ConfigT &config);
private:
int _thread_num;
paddle::lite_api::PowerMode _mode;
std::shared_ptr<paddle::lite_api::PaddlePredictor> _predictor;
bool _is_input_get = false;
int _net_flag;
};
}
#include "predictor_input.h"
namespace ppredictor {
void PredictorInput::set_dims(std::vector<int64_t> dims) {
// yolov3
if (_net_flag == 101 && _index == 1) {
_tensor->Resize({1, 2});
_tensor->mutable_data<int>()[0] = (int)dims.at(2);
_tensor->mutable_data<int>()[1] = (int)dims.at(3);
} else {
_tensor->Resize(dims);
}
_is_dims_set = true;
}
float *PredictorInput::get_mutable_float_data() {
if (!_is_dims_set) {
LOGE("PredictorInput::set_dims is not called");
}
return _tensor->mutable_data<float>();
}
void PredictorInput::set_data(const float *input_data, int input_float_len) {
float *input_raw_data = get_mutable_float_data();
memcpy(input_raw_data, input_data, input_float_len * sizeof(float));
}
}
\ No newline at end of file
#pragma once
#include "common.h"
#include <paddle_api.h>
#include <vector>
namespace ppredictor {
class PredictorInput {
public:
PredictorInput(std::unique_ptr<paddle::lite_api::Tensor> &&tensor, int index,
int net_flag)
: _tensor(std::move(tensor)), _index(index), _net_flag(net_flag) {}
void set_dims(std::vector<int64_t> dims);
float *get_mutable_float_data();
void set_data(const float *input_data, int input_float_len);
private:
std::unique_ptr<paddle::lite_api::Tensor> _tensor;
bool _is_dims_set = false;
int _index;
int _net_flag;
};
}
#include "predictor_output.h"
namespace ppredictor {
const float *PredictorOutput::get_float_data() const {
return _tensor->data<float>();
}
const int *PredictorOutput::get_int_data() const {
return _tensor->data<int>();
}
const std::vector<std::vector<uint64_t>> PredictorOutput::get_lod() const {
return _tensor->lod();
}
int64_t PredictorOutput::get_size() const {
if (_net_flag == NET_OCR) {
return _tensor->shape().at(2) * _tensor->shape().at(3);
} else {
return product(_tensor->shape());
}
}
const std::vector<int64_t> PredictorOutput::get_shape() const {
return _tensor->shape();
}
}
\ No newline at end of file
#pragma once
#include "common.h"
#include <paddle_api.h>
#include <vector>
namespace ppredictor {
class PredictorOutput {
public:
PredictorOutput() {}
PredictorOutput(std::unique_ptr<const paddle::lite_api::Tensor> &&tensor,
int index, int net_flag)
: _tensor(std::move(tensor)), _index(index), _net_flag(net_flag) {}
const float *get_float_data() const;
const int *get_int_data() const;
int64_t get_size() const;
const std::vector<std::vector<uint64_t>> get_lod() const;
const std::vector<int64_t> get_shape() const;
std::vector<float> data; // return float, or use data_int
std::vector<int> data_int; // several layers return int ,or use data
std::vector<int64_t> shape; // PaddleLite output shape
std::vector<std::vector<uint64_t>> lod; // PaddleLite output lod
private:
std::unique_ptr<const paddle::lite_api::Tensor> _tensor;
int _index;
int _net_flag;
};
}
#include "preprocess.h"
#include <android/bitmap.h>
cv::Mat bitmap_to_cv_mat(JNIEnv *env, jobject bitmap) {
AndroidBitmapInfo info;
int result = AndroidBitmap_getInfo(env, bitmap, &info);
if (result != ANDROID_BITMAP_RESULT_SUCCESS) {
LOGE("AndroidBitmap_getInfo failed, result: %d", result);
return cv::Mat{};
}
if (info.format != ANDROID_BITMAP_FORMAT_RGBA_8888) {
LOGE("Bitmap format is not RGBA_8888 !");
return cv::Mat{};
}
unsigned char *srcData = NULL;
AndroidBitmap_lockPixels(env, bitmap, (void **)&srcData);
cv::Mat mat = cv::Mat::zeros(info.height, info.width, CV_8UC4);
memcpy(mat.data, srcData, info.height * info.width * 4);
AndroidBitmap_unlockPixels(env, bitmap);
cv::cvtColor(mat, mat, cv::COLOR_RGBA2BGR);
/**
if (!cv::imwrite("/sdcard/1/copy.jpg", mat)){
LOGE("Write image failed " );
}
*/
return mat;
}
cv::Mat resize_img(const cv::Mat &img, int height, int width) {
if (img.rows == height && img.cols == width) {
return img;
}
cv::Mat new_img;
cv::resize(img, new_img, cv::Size(height, width));
return new_img;
}
// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void neon_mean_scale(const float *din, float *dout, int size,
const std::vector<float> &mean,
const std::vector<float> &scale) {
if (mean.size() != 3 || scale.size() != 3) {
LOGE("[ERROR] mean or scale size must equal to 3");
return;
}
float32x4_t vmean0 = vdupq_n_f32(mean[0]);
float32x4_t vmean1 = vdupq_n_f32(mean[1]);
float32x4_t vmean2 = vdupq_n_f32(mean[2]);
float32x4_t vscale0 = vdupq_n_f32(scale[0]);
float32x4_t vscale1 = vdupq_n_f32(scale[1]);
float32x4_t vscale2 = vdupq_n_f32(scale[2]);
float *dout_c0 = dout;
float *dout_c1 = dout + size;
float *dout_c2 = dout + size * 2;
int i = 0;
for (; i < size - 3; i += 4) {
float32x4x3_t vin3 = vld3q_f32(din);
float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
vst1q_f32(dout_c0, vs0);
vst1q_f32(dout_c1, vs1);
vst1q_f32(dout_c2, vs2);
din += 12;
dout_c0 += 4;
dout_c1 += 4;
dout_c2 += 4;
}
for (; i < size; i++) {
*(dout_c0++) = (*(din++) - mean[0]) * scale[0];
*(dout_c1++) = (*(din++) - mean[1]) * scale[1];
*(dout_c2++) = (*(din++) - mean[2]) * scale[2];
}
}
\ No newline at end of file
#pragma once
#include "common.h"
#include <jni.h>
#include <opencv2/opencv.hpp>
cv::Mat bitmap_to_cv_mat(JNIEnv *env, jobject bitmap);
cv::Mat resize_img(const cv::Mat &img, int height, int width);
void neon_mean_scale(const float *din, float *dout, int size,
const std::vector<float> &mean,
const std::vector<float> &scale);
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.baidu.paddle.lite.demo.ocr;
import android.content.res.Configuration;
import android.os.Bundle;
import android.preference.PreferenceActivity;
import android.view.MenuInflater;
import android.view.View;
import android.view.ViewGroup;
import androidx.annotation.LayoutRes;
import androidx.annotation.Nullable;
import androidx.appcompat.app.ActionBar;
import androidx.appcompat.app.AppCompatDelegate;
import androidx.appcompat.widget.Toolbar;
/**
* A {@link PreferenceActivity} which implements and proxies the necessary calls
* to be used with AppCompat.
* <p>
* This technique can be used with an {@link android.app.Activity} class, not just
* {@link PreferenceActivity}.
*/
public abstract class AppCompatPreferenceActivity extends PreferenceActivity {
private AppCompatDelegate mDelegate;
@Override
protected void onCreate(Bundle savedInstanceState) {
getDelegate().installViewFactory();
getDelegate().onCreate(savedInstanceState);
super.onCreate(savedInstanceState);
}
@Override
protected void onPostCreate(Bundle savedInstanceState) {
super.onPostCreate(savedInstanceState);
getDelegate().onPostCreate(savedInstanceState);
}
public ActionBar getSupportActionBar() {
return getDelegate().getSupportActionBar();
}
public void setSupportActionBar(@Nullable Toolbar toolbar) {
getDelegate().setSupportActionBar(toolbar);
}
@Override
public MenuInflater getMenuInflater() {
return getDelegate().getMenuInflater();
}
@Override
public void setContentView(@LayoutRes int layoutResID) {
getDelegate().setContentView(layoutResID);
}
@Override
public void setContentView(View view) {
getDelegate().setContentView(view);
}
@Override
public void setContentView(View view, ViewGroup.LayoutParams params) {
getDelegate().setContentView(view, params);
}
@Override
public void addContentView(View view, ViewGroup.LayoutParams params) {
getDelegate().addContentView(view, params);
}
@Override
protected void onPostResume() {
super.onPostResume();
getDelegate().onPostResume();
}
@Override
protected void onTitleChanged(CharSequence title, int color) {
super.onTitleChanged(title, color);
getDelegate().setTitle(title);
}
@Override
public void onConfigurationChanged(Configuration newConfig) {
super.onConfigurationChanged(newConfig);
getDelegate().onConfigurationChanged(newConfig);
}
@Override
protected void onStop() {
super.onStop();
getDelegate().onStop();
}
@Override
protected void onDestroy() {
super.onDestroy();
getDelegate().onDestroy();
}
public void invalidateOptionsMenu() {
getDelegate().invalidateOptionsMenu();
}
private AppCompatDelegate getDelegate() {
if (mDelegate == null) {
mDelegate = AppCompatDelegate.create(this, null);
}
return mDelegate;
}
}
package com.baidu.paddle.lite.demo.ocr;
import android.Manifest;
import android.app.ProgressDialog;
import android.content.ContentResolver;
import android.content.Context;
import android.content.Intent;
import android.content.SharedPreferences;
import android.content.pm.PackageManager;
import android.database.Cursor;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.drawable.BitmapDrawable;
import android.media.ExifInterface;
import android.content.res.AssetManager;
import android.net.Uri;
import android.os.Bundle;
import android.os.Environment;
import android.os.Handler;
import android.os.HandlerThread;
import android.os.Message;
import android.preference.PreferenceManager;
import android.provider.MediaStore;
import android.text.method.ScrollingMovementMethod;
import android.util.Log;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.widget.ImageView;
import android.widget.TextView;
import android.widget.Toast;
import androidx.annotation.NonNull;
import androidx.appcompat.app.AppCompatActivity;
import androidx.core.app.ActivityCompat;
import androidx.core.content.ContextCompat;
import androidx.core.content.FileProvider;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.text.SimpleDateFormat;
import java.util.Date;
public class MainActivity extends AppCompatActivity {
private static final String TAG = MainActivity.class.getSimpleName();
public static final int OPEN_GALLERY_REQUEST_CODE = 0;
public static final int TAKE_PHOTO_REQUEST_CODE = 1;
public static final int REQUEST_LOAD_MODEL = 0;
public static final int REQUEST_RUN_MODEL = 1;
public static final int RESPONSE_LOAD_MODEL_SUCCESSED = 0;
public static final int RESPONSE_LOAD_MODEL_FAILED = 1;
public static final int RESPONSE_RUN_MODEL_SUCCESSED = 2;
public static final int RESPONSE_RUN_MODEL_FAILED = 3;
protected ProgressDialog pbLoadModel = null;
protected ProgressDialog pbRunModel = null;
protected Handler receiver = null; // Receive messages from worker thread
protected Handler sender = null; // Send command to worker thread
protected HandlerThread worker = null; // Worker thread to load&run model
// UI components of object detection
protected TextView tvInputSetting;
protected TextView tvStatus;
protected ImageView ivInputImage;
protected TextView tvOutputResult;
protected TextView tvInferenceTime;
// Model settings of object detection
protected String modelPath = "";
protected String labelPath = "";
protected String imagePath = "";
protected int cpuThreadNum = 1;
protected String cpuPowerMode = "";
protected String inputColorFormat = "";
protected long[] inputShape = new long[]{};
protected float[] inputMean = new float[]{};
protected float[] inputStd = new float[]{};
protected float scoreThreshold = 0.1f;
private String currentPhotoPath;
private AssetManager assetManager =null;
protected Predictor predictor = new Predictor();
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
// Clear all setting items to avoid app crashing due to the incorrect settings
SharedPreferences sharedPreferences = PreferenceManager.getDefaultSharedPreferences(this);
SharedPreferences.Editor editor = sharedPreferences.edit();
editor.clear();
editor.apply();
// Setup the UI components
tvInputSetting = findViewById(R.id.tv_input_setting);
tvStatus = findViewById(R.id.tv_model_img_status);
ivInputImage = findViewById(R.id.iv_input_image);
tvInferenceTime = findViewById(R.id.tv_inference_time);
tvOutputResult = findViewById(R.id.tv_output_result);
tvInputSetting.setMovementMethod(ScrollingMovementMethod.getInstance());
tvOutputResult.setMovementMethod(ScrollingMovementMethod.getInstance());
// Prepare the worker thread for mode loading and inference
receiver = new Handler() {
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case RESPONSE_LOAD_MODEL_SUCCESSED:
if(pbLoadModel!=null && pbLoadModel.isShowing()){
pbLoadModel.dismiss();
}
onLoadModelSuccessed();
break;
case RESPONSE_LOAD_MODEL_FAILED:
if(pbLoadModel!=null && pbLoadModel.isShowing()){
pbLoadModel.dismiss();
}
Toast.makeText(MainActivity.this, "Load model failed!", Toast.LENGTH_SHORT).show();
onLoadModelFailed();
break;
case RESPONSE_RUN_MODEL_SUCCESSED:
if(pbRunModel!=null && pbRunModel.isShowing()){
pbRunModel.dismiss();
}
onRunModelSuccessed();
break;
case RESPONSE_RUN_MODEL_FAILED:
if(pbRunModel!=null && pbRunModel.isShowing()){
pbRunModel.dismiss();
}
Toast.makeText(MainActivity.this, "Run model failed!", Toast.LENGTH_SHORT).show();
onRunModelFailed();
break;
default:
break;
}
}
};
worker = new HandlerThread("Predictor Worker");
worker.start();
sender = new Handler(worker.getLooper()) {
public void handleMessage(Message msg) {
switch (msg.what) {
case REQUEST_LOAD_MODEL:
// Load model and reload test image
if (onLoadModel()) {
receiver.sendEmptyMessage(RESPONSE_LOAD_MODEL_SUCCESSED);
} else {
receiver.sendEmptyMessage(RESPONSE_LOAD_MODEL_FAILED);
}
break;
case REQUEST_RUN_MODEL:
// Run model if model is loaded
if (onRunModel()) {
receiver.sendEmptyMessage(RESPONSE_RUN_MODEL_SUCCESSED);
} else {
receiver.sendEmptyMessage(RESPONSE_RUN_MODEL_FAILED);
}
break;
default:
break;
}
}
};
}
@Override
protected void onResume() {
super.onResume();
SharedPreferences sharedPreferences = PreferenceManager.getDefaultSharedPreferences(this);
boolean settingsChanged = false;
String model_path = sharedPreferences.getString(getString(R.string.MODEL_PATH_KEY),
getString(R.string.MODEL_PATH_DEFAULT));
String label_path = sharedPreferences.getString(getString(R.string.LABEL_PATH_KEY),
getString(R.string.LABEL_PATH_DEFAULT));
String image_path = sharedPreferences.getString(getString(R.string.IMAGE_PATH_KEY),
getString(R.string.IMAGE_PATH_DEFAULT));
settingsChanged |= !model_path.equalsIgnoreCase(modelPath);
settingsChanged |= !label_path.equalsIgnoreCase(labelPath);
settingsChanged |= !image_path.equalsIgnoreCase(imagePath);
int cpu_thread_num = Integer.parseInt(sharedPreferences.getString(getString(R.string.CPU_THREAD_NUM_KEY),
getString(R.string.CPU_THREAD_NUM_DEFAULT)));
settingsChanged |= cpu_thread_num != cpuThreadNum;
String cpu_power_mode =
sharedPreferences.getString(getString(R.string.CPU_POWER_MODE_KEY),
getString(R.string.CPU_POWER_MODE_DEFAULT));
settingsChanged |= !cpu_power_mode.equalsIgnoreCase(cpuPowerMode);
String input_color_format =
sharedPreferences.getString(getString(R.string.INPUT_COLOR_FORMAT_KEY),
getString(R.string.INPUT_COLOR_FORMAT_DEFAULT));
settingsChanged |= !input_color_format.equalsIgnoreCase(inputColorFormat);
long[] input_shape =
Utils.parseLongsFromString(sharedPreferences.getString(getString(R.string.INPUT_SHAPE_KEY),
getString(R.string.INPUT_SHAPE_DEFAULT)), ",");
float[] input_mean =
Utils.parseFloatsFromString(sharedPreferences.getString(getString(R.string.INPUT_MEAN_KEY),
getString(R.string.INPUT_MEAN_DEFAULT)), ",");
float[] input_std =
Utils.parseFloatsFromString(sharedPreferences.getString(getString(R.string.INPUT_STD_KEY)
, getString(R.string.INPUT_STD_DEFAULT)), ",");
settingsChanged |= input_shape.length != inputShape.length;
settingsChanged |= input_mean.length != inputMean.length;
settingsChanged |= input_std.length != inputStd.length;
if (!settingsChanged) {
for (int i = 0; i < input_shape.length; i++) {
settingsChanged |= input_shape[i] != inputShape[i];
}
for (int i = 0; i < input_mean.length; i++) {
settingsChanged |= input_mean[i] != inputMean[i];
}
for (int i = 0; i < input_std.length; i++) {
settingsChanged |= input_std[i] != inputStd[i];
}
}
float score_threshold =
Float.parseFloat(sharedPreferences.getString(getString(R.string.SCORE_THRESHOLD_KEY),
getString(R.string.SCORE_THRESHOLD_DEFAULT)));
settingsChanged |= scoreThreshold != score_threshold;
if (settingsChanged) {
modelPath = model_path;
labelPath = label_path;
imagePath = image_path;
cpuThreadNum = cpu_thread_num;
cpuPowerMode = cpu_power_mode;
inputColorFormat = input_color_format;
inputShape = input_shape;
inputMean = input_mean;
inputStd = input_std;
scoreThreshold = score_threshold;
// Update UI
tvInputSetting.setText("Model: " + modelPath.substring(modelPath.lastIndexOf("/") + 1) + "\n" + "CPU" +
" Thread Num: " + Integer.toString(cpuThreadNum) + "\n" + "CPU Power Mode: " + cpuPowerMode);
tvInputSetting.scrollTo(0, 0);
// Reload model if configure has been changed
// loadModel();
set_img();
}
}
public void loadModel() {
pbLoadModel = ProgressDialog.show(this, "", "loading model...", false, false);
sender.sendEmptyMessage(REQUEST_LOAD_MODEL);
}
public void runModel() {
pbRunModel = ProgressDialog.show(this, "", "running model...", false, false);
sender.sendEmptyMessage(REQUEST_RUN_MODEL);
}
public boolean onLoadModel() {
return predictor.init(MainActivity.this, modelPath, labelPath, cpuThreadNum,
cpuPowerMode,
inputColorFormat,
inputShape, inputMean,
inputStd, scoreThreshold);
}
public boolean onRunModel() {
return predictor.isLoaded() && predictor.runModel();
}
public void onLoadModelSuccessed() {
// Load test image from path and run model
tvStatus.setText("STATUS: load model successed");
}
public void onLoadModelFailed() {
tvStatus.setText("STATUS: load model failed");
}
public void onRunModelSuccessed() {
tvStatus.setText("STATUS: run model successed");
// Obtain results and update UI
tvInferenceTime.setText("Inference time: " + predictor.inferenceTime() + " ms");
Bitmap outputImage = predictor.outputImage();
if (outputImage != null) {
ivInputImage.setImageBitmap(outputImage);
}
tvOutputResult.setText(predictor.outputResult());
tvOutputResult.scrollTo(0, 0);
}
public void onRunModelFailed() {
tvStatus.setText("STATUS: run model failed");
}
public void onImageChanged(Bitmap image) {
// Rerun model if users pick test image from gallery or camera
if (image != null && predictor.isLoaded()) {
predictor.setInputImage(image);
runModel();
}
}
public void set_img() {
// Load test image from path and run model
try {
assetManager= getAssets();
InputStream in=assetManager.open(imagePath);
Bitmap bmp=BitmapFactory.decodeStream(in);
ivInputImage.setImageBitmap(bmp);
} catch (IOException e) {
Toast.makeText(MainActivity.this, "Load image failed!", Toast.LENGTH_SHORT).show();
e.printStackTrace();
}
}
public void onSettingsClicked() {
startActivity(new Intent(MainActivity.this, SettingsActivity.class));
}
@Override
public boolean onCreateOptionsMenu(Menu menu) {
MenuInflater inflater = getMenuInflater();
inflater.inflate(R.menu.menu_action_options, menu);
return true;
}
public boolean onPrepareOptionsMenu(Menu menu) {
boolean isLoaded = predictor.isLoaded();
return super.onPrepareOptionsMenu(menu);
}
@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case android.R.id.home:
finish();
break;
case R.id.settings:
if (requestAllPermissions()) {
// Make sure we have SDCard r&w permissions to load model from SDCard
onSettingsClicked();
}
break;
}
return super.onOptionsItemSelected(item);
}
@Override
public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions,
@NonNull int[] grantResults) {
super.onRequestPermissionsResult(requestCode, permissions, grantResults);
if (grantResults[0] != PackageManager.PERMISSION_GRANTED || grantResults[1] != PackageManager.PERMISSION_GRANTED) {
Toast.makeText(this, "Permission Denied", Toast.LENGTH_SHORT).show();
}
}
private boolean requestAllPermissions() {
if (ContextCompat.checkSelfPermission(this, Manifest.permission.WRITE_EXTERNAL_STORAGE)
!= PackageManager.PERMISSION_GRANTED || ContextCompat.checkSelfPermission(this,
Manifest.permission.CAMERA)
!= PackageManager.PERMISSION_GRANTED) {
ActivityCompat.requestPermissions(this, new String[]{Manifest.permission.WRITE_EXTERNAL_STORAGE,
Manifest.permission.CAMERA},
0);
return false;
}
return true;
}
private void openGallery() {
Intent intent = new Intent(Intent.ACTION_PICK, null);
intent.setDataAndType(MediaStore.Images.Media.EXTERNAL_CONTENT_URI, "image/*");
startActivityForResult(intent, OPEN_GALLERY_REQUEST_CODE);
}
private void takePhoto() {
Intent takePictureIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
// Ensure that there's a camera activity to handle the intent
if (takePictureIntent.resolveActivity(getPackageManager()) != null) {
// Create the File where the photo should go
File photoFile = null;
try {
photoFile = createImageFile();
} catch (IOException ex) {
Log.e("MainActitity", ex.getMessage(), ex);
Toast.makeText(MainActivity.this,
"Create Camera temp file failed: " + ex.getMessage(), Toast.LENGTH_SHORT).show();
}
// Continue only if the File was successfully created
if (photoFile != null) {
Log.i(TAG, "FILEPATH " + getExternalFilesDir("Pictures").getAbsolutePath());
Uri photoURI = FileProvider.getUriForFile(this,
"com.baidu.paddle.lite.demo.ocr.fileprovider",
photoFile);
currentPhotoPath = photoFile.getAbsolutePath();
takePictureIntent.putExtra(MediaStore.EXTRA_OUTPUT, photoURI);
startActivityForResult(takePictureIntent, TAKE_PHOTO_REQUEST_CODE);
Log.i(TAG, "startActivityForResult finished");
}
}
}
private File createImageFile() throws IOException {
// Create an image file name
String timeStamp = new SimpleDateFormat("yyyyMMdd_HHmmss").format(new Date());
String imageFileName = "JPEG_" + timeStamp + "_";
File storageDir = getExternalFilesDir(Environment.DIRECTORY_PICTURES);
File image = File.createTempFile(
imageFileName, /* prefix */
".bmp", /* suffix */
storageDir /* directory */
);
return image;
}
@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);
if (resultCode == RESULT_OK) {
switch (requestCode) {
case OPEN_GALLERY_REQUEST_CODE:
if (data == null) {
break;
}
try {
ContentResolver resolver = getContentResolver();
Uri uri = data.getData();
Bitmap image = MediaStore.Images.Media.getBitmap(resolver, uri);
String[] proj = {MediaStore.Images.Media.DATA};
Cursor cursor = managedQuery(uri, proj, null, null, null);
cursor.moveToFirst();
if (image != null) {
// onImageChanged(image);
ivInputImage.setImageBitmap(image);
}
} catch (IOException e) {
Log.e(TAG, e.toString());
}
break;
case TAKE_PHOTO_REQUEST_CODE:
if (currentPhotoPath != null) {
ExifInterface exif = null;
try {
exif = new ExifInterface(currentPhotoPath);
} catch (IOException e) {
e.printStackTrace();
}
int orientation = exif.getAttributeInt(ExifInterface.TAG_ORIENTATION,
ExifInterface.ORIENTATION_UNDEFINED);
Log.i(TAG, "rotation " + orientation);
Bitmap image = BitmapFactory.decodeFile(currentPhotoPath);
image = Utils.rotateBitmap(image, orientation);
if (image != null) {
// onImageChanged(image);
ivInputImage.setImageBitmap(image);
}
} else {
Log.e(TAG, "currentPhotoPath is null");
}
break;
default:
break;
}
}
}
public void btn_load_model_click(View view) {
tvStatus.setText("STATUS: load model ......");
loadModel();
}
public void btn_run_model_click(View view) {
Bitmap image =((BitmapDrawable)ivInputImage.getDrawable()).getBitmap();
if(image == null) {
tvStatus.setText("STATUS: image is not exists");
}
else if (!predictor.isLoaded()){
tvStatus.setText("STATUS: model is not loaded");
}else{
tvStatus.setText("STATUS: run model ...... ");
predictor.setInputImage(image);
runModel();
}
}
public void btn_choice_img_click(View view) {
if (requestAllPermissions()) {
openGallery();
}
}
public void btn_take_photo_click(View view) {
if (requestAllPermissions()) {
takePhoto();
}
}
@Override
protected void onDestroy() {
if (predictor != null) {
predictor.releaseModel();
}
worker.quit();
super.onDestroy();
}
}
package com.baidu.paddle.lite.demo.ocr;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Build;
import android.os.Bundle;
import android.os.Handler;
import android.os.HandlerThread;
import android.os.Message;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.ImageView;
import android.widget.TextView;
import android.widget.Toast;
import androidx.appcompat.app.AppCompatActivity;
import java.io.IOException;
import java.io.InputStream;
public class MiniActivity extends AppCompatActivity {
public static final int REQUEST_LOAD_MODEL = 0;
public static final int REQUEST_RUN_MODEL = 1;
public static final int REQUEST_UNLOAD_MODEL = 2;
public static final int RESPONSE_LOAD_MODEL_SUCCESSED = 0;
public static final int RESPONSE_LOAD_MODEL_FAILED = 1;
public static final int RESPONSE_RUN_MODEL_SUCCESSED = 2;
public static final int RESPONSE_RUN_MODEL_FAILED = 3;
private static final String TAG = "MiniActivity";
protected Handler receiver = null; // Receive messages from worker thread
protected Handler sender = null; // Send command to worker thread
protected HandlerThread worker = null; // Worker thread to load&run model
protected volatile Predictor predictor = null;
private String assetModelDirPath = "models/ocr_v2_for_cpu";
private String assetlabelFilePath = "labels/ppocr_keys_v1.txt";
private Button button;
private ImageView imageView; // image result
private TextView textView; // text result
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_mini);
Log.i(TAG, "SHOW in Logcat");
// Prepare the worker thread for mode loading and inference
worker = new HandlerThread("Predictor Worker");
worker.start();
sender = new Handler(worker.getLooper()) {
public void handleMessage(Message msg) {
switch (msg.what) {
case REQUEST_LOAD_MODEL:
// Load model and reload test image
if (!onLoadModel()) {
runOnUiThread(new Runnable() {
@Override
public void run() {
Toast.makeText(MiniActivity.this, "Load model failed!", Toast.LENGTH_SHORT).show();
}
});
}
break;
case REQUEST_RUN_MODEL:
// Run model if model is loaded
final boolean isSuccessed = onRunModel();
runOnUiThread(new Runnable() {
@Override
public void run() {
if (isSuccessed){
onRunModelSuccessed();
}else{
Toast.makeText(MiniActivity.this, "Run model failed!", Toast.LENGTH_SHORT).show();
}
}
});
break;
}
}
};
sender.sendEmptyMessage(REQUEST_LOAD_MODEL); // corresponding to REQUEST_LOAD_MODEL, to call onLoadModel()
imageView = findViewById(R.id.imageView);
textView = findViewById(R.id.sample_text);
button = findViewById(R.id.button);
button.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
sender.sendEmptyMessage(REQUEST_RUN_MODEL);
}
});
}
@Override
protected void onDestroy() {
onUnloadModel();
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR2) {
worker.quitSafely();
} else {
worker.quit();
}
super.onDestroy();
}
/**
* call in onCreate, model init
*
* @return
*/
private boolean onLoadModel() {
if (predictor == null) {
predictor = new Predictor();
}
return predictor.init(this, assetModelDirPath, assetlabelFilePath);
}
/**
* init engine
* call in onCreate
*
* @return
*/
private boolean onRunModel() {
try {
String assetImagePath = "images/0.jpg";
InputStream imageStream = getAssets().open(assetImagePath);
Bitmap image = BitmapFactory.decodeStream(imageStream);
// Input is Bitmap
predictor.setInputImage(image);
return predictor.isLoaded() && predictor.runModel();
} catch (IOException e) {
e.printStackTrace();
return false;
}
}
private void onRunModelSuccessed() {
Log.i(TAG, "onRunModelSuccessed");
textView.setText(predictor.outputResult);
imageView.setImageBitmap(predictor.outputImage);
}
private void onUnloadModel() {
if (predictor != null) {
predictor.releaseModel();
}
}
}
package com.baidu.paddle.lite.demo.ocr;
import android.graphics.Bitmap;
import android.util.Log;
import java.util.ArrayList;
import java.util.concurrent.atomic.AtomicBoolean;
public class OCRPredictorNative {
private static final AtomicBoolean isSOLoaded = new AtomicBoolean();
public static void loadLibrary() throws RuntimeException {
if (!isSOLoaded.get() && isSOLoaded.compareAndSet(false, true)) {
try {
System.loadLibrary("Native");
} catch (Throwable e) {
RuntimeException exception = new RuntimeException(
"Load libNative.so failed, please check it exists in apk file.", e);
throw exception;
}
}
}
private Config config;
private long nativePointer = 0;
public OCRPredictorNative(Config config) {
this.config = config;
loadLibrary();
nativePointer = init(config.detModelFilename, config.recModelFilename,config.clsModelFilename,
config.cpuThreadNum, config.cpuPower);
Log.i("OCRPredictorNative", "load success " + nativePointer);
}
public ArrayList<OcrResultModel> runImage(float[] inputData, int width, int height, int channels, Bitmap originalImage) {
Log.i("OCRPredictorNative", "begin to run image " + inputData.length + " " + width + " " + height);
float[] dims = new float[]{1, channels, height, width};
float[] rawResults = forward(nativePointer, inputData, dims, originalImage);
ArrayList<OcrResultModel> results = postprocess(rawResults);
return results;
}
public static class Config {
public int cpuThreadNum;
public String cpuPower;
public String detModelFilename;
public String recModelFilename;
public String clsModelFilename;
}
public void destory(){
if (nativePointer > 0) {
release(nativePointer);
nativePointer = 0;
}
}
protected native long init(String detModelPath, String recModelPath,String clsModelPath, int threadNum, String cpuMode);
protected native float[] forward(long pointer, float[] buf, float[] ddims, Bitmap originalImage);
protected native void release(long pointer);
private ArrayList<OcrResultModel> postprocess(float[] raw) {
ArrayList<OcrResultModel> results = new ArrayList<OcrResultModel>();
int begin = 0;
while (begin < raw.length) {
int point_num = Math.round(raw[begin]);
int word_num = Math.round(raw[begin + 1]);
OcrResultModel model = parse(raw, begin + 2, point_num, word_num);
begin += 2 + 1 + point_num * 2 + word_num;
results.add(model);
}
return results;
}
private OcrResultModel parse(float[] raw, int begin, int pointNum, int wordNum) {
int current = begin;
OcrResultModel model = new OcrResultModel();
model.setConfidence(raw[current]);
current++;
for (int i = 0; i < pointNum; i++) {
model.addPoints(Math.round(raw[current + i * 2]), Math.round(raw[current + i * 2 + 1]));
}
current += (pointNum * 2);
for (int i = 0; i < wordNum; i++) {
int index = Math.round(raw[current + i]);
model.addWordIndex(index);
}
Log.i("OCRPredictorNative", "word finished " + wordNum);
return model;
}
}
package com.baidu.paddle.lite.demo.ocr;
import android.graphics.Point;
import java.util.ArrayList;
import java.util.List;
public class OcrResultModel {
private List<Point> points;
private List<Integer> wordIndex;
private String label;
private float confidence;
public OcrResultModel() {
super();
points = new ArrayList<>();
wordIndex = new ArrayList<>();
}
public void addPoints(int x, int y) {
Point point = new Point(x, y);
points.add(point);
}
public void addWordIndex(int index) {
wordIndex.add(index);
}
public List<Point> getPoints() {
return points;
}
public List<Integer> getWordIndex() {
return wordIndex;
}
public String getLabel() {
return label;
}
public void setLabel(String label) {
this.label = label;
}
public float getConfidence() {
return confidence;
}
public void setConfidence(float confidence) {
this.confidence = confidence;
}
}
package com.baidu.paddle.lite.demo.ocr;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.Point;
import android.util.Log;
import java.io.File;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.Vector;
import static android.graphics.Color.*;
public class Predictor {
private static final String TAG = Predictor.class.getSimpleName();
public boolean isLoaded = false;
public int warmupIterNum = 1;
public int inferIterNum = 1;
public int cpuThreadNum = 4;
public String cpuPowerMode = "LITE_POWER_HIGH";
public String modelPath = "";
public String modelName = "";
protected OCRPredictorNative paddlePredictor = null;
protected float inferenceTime = 0;
// Only for object detection
protected Vector<String> wordLabels = new Vector<String>();
protected String inputColorFormat = "BGR";
protected long[] inputShape = new long[]{1, 3, 960};
protected float[] inputMean = new float[]{0.485f, 0.456f, 0.406f};
protected float[] inputStd = new float[]{1.0f / 0.229f, 1.0f / 0.224f, 1.0f / 0.225f};
protected float scoreThreshold = 0.1f;
protected Bitmap inputImage = null;
protected Bitmap outputImage = null;
protected volatile String outputResult = "";
protected float preprocessTime = 0;
protected float postprocessTime = 0;
public Predictor() {
}
public boolean init(Context appCtx, String modelPath, String labelPath) {
isLoaded = loadModel(appCtx, modelPath, cpuThreadNum, cpuPowerMode);
if (!isLoaded) {
return false;
}
isLoaded = loadLabel(appCtx, labelPath);
return isLoaded;
}
public boolean init(Context appCtx, String modelPath, String labelPath, int cpuThreadNum, String cpuPowerMode,
String inputColorFormat,
long[] inputShape, float[] inputMean,
float[] inputStd, float scoreThreshold) {
if (inputShape.length != 3) {
Log.e(TAG, "Size of input shape should be: 3");
return false;
}
if (inputMean.length != inputShape[1]) {
Log.e(TAG, "Size of input mean should be: " + Long.toString(inputShape[1]));
return false;
}
if (inputStd.length != inputShape[1]) {
Log.e(TAG, "Size of input std should be: " + Long.toString(inputShape[1]));
return false;
}
if (inputShape[0] != 1) {
Log.e(TAG, "Only one batch is supported in the image classification demo, you can use any batch size in " +
"your Apps!");
return false;
}
if (inputShape[1] != 1 && inputShape[1] != 3) {
Log.e(TAG, "Only one/three channels are supported in the image classification demo, you can use any " +
"channel size in your Apps!");
return false;
}
if (!inputColorFormat.equalsIgnoreCase("BGR")) {
Log.e(TAG, "Only BGR color format is supported.");
return false;
}
boolean isLoaded = init(appCtx, modelPath, labelPath);
if (!isLoaded) {
return false;
}
this.inputColorFormat = inputColorFormat;
this.inputShape = inputShape;
this.inputMean = inputMean;
this.inputStd = inputStd;
this.scoreThreshold = scoreThreshold;
return true;
}
protected boolean loadModel(Context appCtx, String modelPath, int cpuThreadNum, String cpuPowerMode) {
// Release model if exists
releaseModel();
// Load model
if (modelPath.isEmpty()) {
return false;
}
String realPath = modelPath;
if (!modelPath.substring(0, 1).equals("/")) {
// Read model files from custom path if the first character of mode path is '/'
// otherwise copy model to cache from assets
realPath = appCtx.getCacheDir() + "/" + modelPath;
Utils.copyDirectoryFromAssets(appCtx, modelPath, realPath);
}
if (realPath.isEmpty()) {
return false;
}
OCRPredictorNative.Config config = new OCRPredictorNative.Config();
config.cpuThreadNum = cpuThreadNum;
config.detModelFilename = realPath + File.separator + "ch_ppocr_mobile_v2.0_det_opt.nb";
config.recModelFilename = realPath + File.separator + "ch_ppocr_mobile_v2.0_rec_opt.nb";
config.clsModelFilename = realPath + File.separator + "ch_ppocr_mobile_v2.0_cls_opt.nb";
Log.e("Predictor", "model path" + config.detModelFilename + " ; " + config.recModelFilename + ";" + config.clsModelFilename);
config.cpuPower = cpuPowerMode;
paddlePredictor = new OCRPredictorNative(config);
this.cpuThreadNum = cpuThreadNum;
this.cpuPowerMode = cpuPowerMode;
this.modelPath = realPath;
this.modelName = realPath.substring(realPath.lastIndexOf("/") + 1);
return true;
}
public void releaseModel() {
if (paddlePredictor != null) {
paddlePredictor.destory();
paddlePredictor = null;
}
isLoaded = false;
cpuThreadNum = 1;
cpuPowerMode = "LITE_POWER_HIGH";
modelPath = "";
modelName = "";
}
protected boolean loadLabel(Context appCtx, String labelPath) {
wordLabels.clear();
wordLabels.add("black");
// Load word labels from file
try {
InputStream assetsInputStream = appCtx.getAssets().open(labelPath);
int available = assetsInputStream.available();
byte[] lines = new byte[available];
assetsInputStream.read(lines);
assetsInputStream.close();
String words = new String(lines);
String[] contents = words.split("\n");
for (String content : contents) {
wordLabels.add(content);
}
Log.i(TAG, "Word label size: " + wordLabels.size());
} catch (Exception e) {
Log.e(TAG, e.getMessage());
return false;
}
return true;
}
public boolean runModel() {
if (inputImage == null || !isLoaded()) {
return false;
}
// Pre-process image, and feed input tensor with pre-processed data
Bitmap scaleImage = Utils.resizeWithStep(inputImage, Long.valueOf(inputShape[2]).intValue(), 32);
Date start = new Date();
int channels = (int) inputShape[1];
int width = scaleImage.getWidth();
int height = scaleImage.getHeight();
float[] inputData = new float[channels * width * height];
if (channels == 3) {
int[] channelIdx = null;
if (inputColorFormat.equalsIgnoreCase("RGB")) {
channelIdx = new int[]{0, 1, 2};
} else if (inputColorFormat.equalsIgnoreCase("BGR")) {
channelIdx = new int[]{2, 1, 0};
} else {
Log.i(TAG, "Unknown color format " + inputColorFormat + ", only RGB and BGR color format is " +
"supported!");
return false;
}
int[] channelStride = new int[]{width * height, width * height * 2};
int p = scaleImage.getPixel(scaleImage.getWidth() - 1, scaleImage.getHeight() - 1);
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
int color = scaleImage.getPixel(x, y);
float[] rgb = new float[]{(float) red(color) / 255.0f, (float) green(color) / 255.0f,
(float) blue(color) / 255.0f};
inputData[y * width + x] = (rgb[channelIdx[0]] - inputMean[0]) / inputStd[0];
inputData[y * width + x + channelStride[0]] = (rgb[channelIdx[1]] - inputMean[1]) / inputStd[1];
inputData[y * width + x + channelStride[1]] = (rgb[channelIdx[2]] - inputMean[2]) / inputStd[2];
}
}
} else if (channels == 1) {
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
int color = inputImage.getPixel(x, y);
float gray = (float) (red(color) + green(color) + blue(color)) / 3.0f / 255.0f;
inputData[y * width + x] = (gray - inputMean[0]) / inputStd[0];
}
}
} else {
Log.i(TAG, "Unsupported channel size " + Integer.toString(channels) + ", only channel 1 and 3 is " +
"supported!");
return false;
}
float[] pixels = inputData;
Log.i(TAG, "pixels " + pixels[0] + " " + pixels[1] + " " + pixels[2] + " " + pixels[3]
+ " " + pixels[pixels.length / 2] + " " + pixels[pixels.length / 2 + 1] + " " + pixels[pixels.length - 2] + " " + pixels[pixels.length - 1]);
Date end = new Date();
preprocessTime = (float) (end.getTime() - start.getTime());
// Warm up
for (int i = 0; i < warmupIterNum; i++) {
paddlePredictor.runImage(inputData, width, height, channels, inputImage);
}
warmupIterNum = 0; // do not need warm
// Run inference
start = new Date();
ArrayList<OcrResultModel> results = paddlePredictor.runImage(inputData, width, height, channels, inputImage);
end = new Date();
inferenceTime = (end.getTime() - start.getTime()) / (float) inferIterNum;
results = postprocess(results);
Log.i(TAG, "[stat] Preprocess Time: " + preprocessTime
+ " ; Inference Time: " + inferenceTime + " ;Box Size " + results.size());
drawResults(results);
return true;
}
public boolean isLoaded() {
return paddlePredictor != null && isLoaded;
}
public String modelPath() {
return modelPath;
}
public String modelName() {
return modelName;
}
public int cpuThreadNum() {
return cpuThreadNum;
}
public String cpuPowerMode() {
return cpuPowerMode;
}
public float inferenceTime() {
return inferenceTime;
}
public Bitmap inputImage() {
return inputImage;
}
public Bitmap outputImage() {
return outputImage;
}
public String outputResult() {
return outputResult;
}
public float preprocessTime() {
return preprocessTime;
}
public float postprocessTime() {
return postprocessTime;
}
public void setInputImage(Bitmap image) {
if (image == null) {
return;
}
this.inputImage = image.copy(Bitmap.Config.ARGB_8888, true);
}
private ArrayList<OcrResultModel> postprocess(ArrayList<OcrResultModel> results) {
for (OcrResultModel r : results) {
StringBuffer word = new StringBuffer();
for (int index : r.getWordIndex()) {
if (index >= 0 && index < wordLabels.size()) {
word.append(wordLabels.get(index));
} else {
Log.e(TAG, "Word index is not in label list:" + index);
word.append("×");
}
}
r.setLabel(word.toString());
}
return results;
}
private void drawResults(ArrayList<OcrResultModel> results) {
StringBuffer outputResultSb = new StringBuffer("");
for (int i = 0; i < results.size(); i++) {
OcrResultModel result = results.get(i);
StringBuilder sb = new StringBuilder("");
sb.append(result.getLabel());
sb.append(" ").append(result.getConfidence());
sb.append("; Points: ");
for (Point p : result.getPoints()) {
sb.append("(").append(p.x).append(",").append(p.y).append(") ");
}
Log.i(TAG, sb.toString()); // show LOG in Logcat panel
outputResultSb.append(i + 1).append(": ").append(result.getLabel()).append("\n");
}
outputResult = outputResultSb.toString();
outputImage = inputImage;
Canvas canvas = new Canvas(outputImage);
Paint paintFillAlpha = new Paint();
paintFillAlpha.setStyle(Paint.Style.FILL);
paintFillAlpha.setColor(Color.parseColor("#3B85F5"));
paintFillAlpha.setAlpha(50);
Paint paint = new Paint();
paint.setColor(Color.parseColor("#3B85F5"));
paint.setStrokeWidth(5);
paint.setStyle(Paint.Style.STROKE);
for (OcrResultModel result : results) {
Path path = new Path();
List<Point> points = result.getPoints();
path.moveTo(points.get(0).x, points.get(0).y);
for (int i = points.size() - 1; i >= 0; i--) {
Point p = points.get(i);
path.lineTo(p.x, p.y);
}
canvas.drawPath(path, paint);
canvas.drawPath(path, paintFillAlpha);
}
}
}
package com.baidu.paddle.lite.demo.ocr;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.preference.CheckBoxPreference;
import android.preference.EditTextPreference;
import android.preference.ListPreference;
import androidx.appcompat.app.ActionBar;
import java.util.ArrayList;
import java.util.List;
public class SettingsActivity extends AppCompatPreferenceActivity implements SharedPreferences.OnSharedPreferenceChangeListener {
ListPreference lpChoosePreInstalledModel = null;
CheckBoxPreference cbEnableCustomSettings = null;
EditTextPreference etModelPath = null;
EditTextPreference etLabelPath = null;
ListPreference etImagePath = null;
ListPreference lpCPUThreadNum = null;
ListPreference lpCPUPowerMode = null;
ListPreference lpInputColorFormat = null;
EditTextPreference etInputShape = null;
EditTextPreference etInputMean = null;
EditTextPreference etInputStd = null;
EditTextPreference etScoreThreshold = null;
List<String> preInstalledModelPaths = null;
List<String> preInstalledLabelPaths = null;
List<String> preInstalledImagePaths = null;
List<String> preInstalledInputShapes = null;
List<String> preInstalledCPUThreadNums = null;
List<String> preInstalledCPUPowerModes = null;
List<String> preInstalledInputColorFormats = null;
List<String> preInstalledInputMeans = null;
List<String> preInstalledInputStds = null;
List<String> preInstalledScoreThresholds = null;
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
addPreferencesFromResource(R.xml.settings);
ActionBar supportActionBar = getSupportActionBar();
if (supportActionBar != null) {
supportActionBar.setDisplayHomeAsUpEnabled(true);
}
// Initialized pre-installed models
preInstalledModelPaths = new ArrayList<String>();
preInstalledLabelPaths = new ArrayList<String>();
preInstalledImagePaths = new ArrayList<String>();
preInstalledInputShapes = new ArrayList<String>();
preInstalledCPUThreadNums = new ArrayList<String>();
preInstalledCPUPowerModes = new ArrayList<String>();
preInstalledInputColorFormats = new ArrayList<String>();
preInstalledInputMeans = new ArrayList<String>();
preInstalledInputStds = new ArrayList<String>();
preInstalledScoreThresholds = new ArrayList<String>();
// Add ssd_mobilenet_v1_pascalvoc_for_cpu
preInstalledModelPaths.add(getString(R.string.MODEL_PATH_DEFAULT));
preInstalledLabelPaths.add(getString(R.string.LABEL_PATH_DEFAULT));
preInstalledImagePaths.add(getString(R.string.IMAGE_PATH_DEFAULT));
preInstalledCPUThreadNums.add(getString(R.string.CPU_THREAD_NUM_DEFAULT));
preInstalledCPUPowerModes.add(getString(R.string.CPU_POWER_MODE_DEFAULT));
preInstalledInputColorFormats.add(getString(R.string.INPUT_COLOR_FORMAT_DEFAULT));
preInstalledInputShapes.add(getString(R.string.INPUT_SHAPE_DEFAULT));
preInstalledInputMeans.add(getString(R.string.INPUT_MEAN_DEFAULT));
preInstalledInputStds.add(getString(R.string.INPUT_STD_DEFAULT));
preInstalledScoreThresholds.add(getString(R.string.SCORE_THRESHOLD_DEFAULT));
// Setup UI components
lpChoosePreInstalledModel =
(ListPreference) findPreference(getString(R.string.CHOOSE_PRE_INSTALLED_MODEL_KEY));
String[] preInstalledModelNames = new String[preInstalledModelPaths.size()];
for (int i = 0; i < preInstalledModelPaths.size(); i++) {
preInstalledModelNames[i] =
preInstalledModelPaths.get(i).substring(preInstalledModelPaths.get(i).lastIndexOf("/") + 1);
}
lpChoosePreInstalledModel.setEntries(preInstalledModelNames);
lpChoosePreInstalledModel.setEntryValues(preInstalledModelPaths.toArray(new String[preInstalledModelPaths.size()]));
cbEnableCustomSettings =
(CheckBoxPreference) findPreference(getString(R.string.ENABLE_CUSTOM_SETTINGS_KEY));
etModelPath = (EditTextPreference) findPreference(getString(R.string.MODEL_PATH_KEY));
etModelPath.setTitle("Model Path (SDCard: " + Utils.getSDCardDirectory() + ")");
etLabelPath = (EditTextPreference) findPreference(getString(R.string.LABEL_PATH_KEY));
etImagePath = (ListPreference) findPreference(getString(R.string.IMAGE_PATH_KEY));
lpCPUThreadNum =
(ListPreference) findPreference(getString(R.string.CPU_THREAD_NUM_KEY));
lpCPUPowerMode =
(ListPreference) findPreference(getString(R.string.CPU_POWER_MODE_KEY));
lpInputColorFormat =
(ListPreference) findPreference(getString(R.string.INPUT_COLOR_FORMAT_KEY));
etInputShape = (EditTextPreference) findPreference(getString(R.string.INPUT_SHAPE_KEY));
etInputMean = (EditTextPreference) findPreference(getString(R.string.INPUT_MEAN_KEY));
etInputStd = (EditTextPreference) findPreference(getString(R.string.INPUT_STD_KEY));
etScoreThreshold = (EditTextPreference) findPreference(getString(R.string.SCORE_THRESHOLD_KEY));
}
private void reloadPreferenceAndUpdateUI() {
SharedPreferences sharedPreferences = getPreferenceScreen().getSharedPreferences();
boolean enableCustomSettings =
sharedPreferences.getBoolean(getString(R.string.ENABLE_CUSTOM_SETTINGS_KEY), false);
String modelPath = sharedPreferences.getString(getString(R.string.CHOOSE_PRE_INSTALLED_MODEL_KEY),
getString(R.string.MODEL_PATH_DEFAULT));
int modelIdx = lpChoosePreInstalledModel.findIndexOfValue(modelPath);
if (modelIdx >= 0 && modelIdx < preInstalledModelPaths.size()) {
if (!enableCustomSettings) {
SharedPreferences.Editor editor = sharedPreferences.edit();
editor.putString(getString(R.string.MODEL_PATH_KEY), preInstalledModelPaths.get(modelIdx));
editor.putString(getString(R.string.LABEL_PATH_KEY), preInstalledLabelPaths.get(modelIdx));
editor.putString(getString(R.string.IMAGE_PATH_KEY), preInstalledImagePaths.get(modelIdx));
editor.putString(getString(R.string.CPU_THREAD_NUM_KEY), preInstalledCPUThreadNums.get(modelIdx));
editor.putString(getString(R.string.CPU_POWER_MODE_KEY), preInstalledCPUPowerModes.get(modelIdx));
editor.putString(getString(R.string.INPUT_COLOR_FORMAT_KEY),
preInstalledInputColorFormats.get(modelIdx));
editor.putString(getString(R.string.INPUT_SHAPE_KEY), preInstalledInputShapes.get(modelIdx));
editor.putString(getString(R.string.INPUT_MEAN_KEY), preInstalledInputMeans.get(modelIdx));
editor.putString(getString(R.string.INPUT_STD_KEY), preInstalledInputStds.get(modelIdx));
editor.putString(getString(R.string.SCORE_THRESHOLD_KEY),
preInstalledScoreThresholds.get(modelIdx));
editor.apply();
}
lpChoosePreInstalledModel.setSummary(modelPath);
}
cbEnableCustomSettings.setChecked(enableCustomSettings);
etModelPath.setEnabled(enableCustomSettings);
etLabelPath.setEnabled(enableCustomSettings);
etImagePath.setEnabled(enableCustomSettings);
lpCPUThreadNum.setEnabled(enableCustomSettings);
lpCPUPowerMode.setEnabled(enableCustomSettings);
lpInputColorFormat.setEnabled(enableCustomSettings);
etInputShape.setEnabled(enableCustomSettings);
etInputMean.setEnabled(enableCustomSettings);
etInputStd.setEnabled(enableCustomSettings);
etScoreThreshold.setEnabled(enableCustomSettings);
modelPath = sharedPreferences.getString(getString(R.string.MODEL_PATH_KEY),
getString(R.string.MODEL_PATH_DEFAULT));
String labelPath = sharedPreferences.getString(getString(R.string.LABEL_PATH_KEY),
getString(R.string.LABEL_PATH_DEFAULT));
String imagePath = sharedPreferences.getString(getString(R.string.IMAGE_PATH_KEY),
getString(R.string.IMAGE_PATH_DEFAULT));
String cpuThreadNum = sharedPreferences.getString(getString(R.string.CPU_THREAD_NUM_KEY),
getString(R.string.CPU_THREAD_NUM_DEFAULT));
String cpuPowerMode = sharedPreferences.getString(getString(R.string.CPU_POWER_MODE_KEY),
getString(R.string.CPU_POWER_MODE_DEFAULT));
String inputColorFormat = sharedPreferences.getString(getString(R.string.INPUT_COLOR_FORMAT_KEY),
getString(R.string.INPUT_COLOR_FORMAT_DEFAULT));
String inputShape = sharedPreferences.getString(getString(R.string.INPUT_SHAPE_KEY),
getString(R.string.INPUT_SHAPE_DEFAULT));
String inputMean = sharedPreferences.getString(getString(R.string.INPUT_MEAN_KEY),
getString(R.string.INPUT_MEAN_DEFAULT));
String inputStd = sharedPreferences.getString(getString(R.string.INPUT_STD_KEY),
getString(R.string.INPUT_STD_DEFAULT));
String scoreThreshold = sharedPreferences.getString(getString(R.string.SCORE_THRESHOLD_KEY),
getString(R.string.SCORE_THRESHOLD_DEFAULT));
etModelPath.setSummary(modelPath);
etModelPath.setText(modelPath);
etLabelPath.setSummary(labelPath);
etLabelPath.setText(labelPath);
etImagePath.setSummary(imagePath);
etImagePath.setValue(imagePath);
lpCPUThreadNum.setValue(cpuThreadNum);
lpCPUThreadNum.setSummary(cpuThreadNum);
lpCPUPowerMode.setValue(cpuPowerMode);
lpCPUPowerMode.setSummary(cpuPowerMode);
lpInputColorFormat.setValue(inputColorFormat);
lpInputColorFormat.setSummary(inputColorFormat);
etInputShape.setSummary(inputShape);
etInputShape.setText(inputShape);
etInputMean.setSummary(inputMean);
etInputMean.setText(inputMean);
etInputStd.setSummary(inputStd);
etInputStd.setText(inputStd);
etScoreThreshold.setText(scoreThreshold);
etScoreThreshold.setSummary(scoreThreshold);
}
@Override
protected void onResume() {
super.onResume();
getPreferenceScreen().getSharedPreferences().registerOnSharedPreferenceChangeListener(this);
reloadPreferenceAndUpdateUI();
}
@Override
protected void onPause() {
super.onPause();
getPreferenceScreen().getSharedPreferences().unregisterOnSharedPreferenceChangeListener(this);
}
@Override
public void onSharedPreferenceChanged(SharedPreferences sharedPreferences, String key) {
if (key.equals(getString(R.string.CHOOSE_PRE_INSTALLED_MODEL_KEY))) {
SharedPreferences.Editor editor = sharedPreferences.edit();
editor.putBoolean(getString(R.string.ENABLE_CUSTOM_SETTINGS_KEY), false);
editor.commit();
}
reloadPreferenceAndUpdateUI();
}
}
package com.baidu.paddle.lite.demo.ocr;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.Matrix;
import android.media.ExifInterface;
import android.os.Environment;
import java.io.*;
public class Utils {
private static final String TAG = Utils.class.getSimpleName();
public static void copyFileFromAssets(Context appCtx, String srcPath, String dstPath) {
if (srcPath.isEmpty() || dstPath.isEmpty()) {
return;
}
InputStream is = null;
OutputStream os = null;
try {
is = new BufferedInputStream(appCtx.getAssets().open(srcPath));
os = new BufferedOutputStream(new FileOutputStream(new File(dstPath)));
byte[] buffer = new byte[1024];
int length = 0;
while ((length = is.read(buffer)) != -1) {
os.write(buffer, 0, length);
}
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
} finally {
try {
os.close();
is.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
public static void copyDirectoryFromAssets(Context appCtx, String srcDir, String dstDir) {
if (srcDir.isEmpty() || dstDir.isEmpty()) {
return;
}
try {
if (!new File(dstDir).exists()) {
new File(dstDir).mkdirs();
}
for (String fileName : appCtx.getAssets().list(srcDir)) {
String srcSubPath = srcDir + File.separator + fileName;
String dstSubPath = dstDir + File.separator + fileName;
if (new File(srcSubPath).isDirectory()) {
copyDirectoryFromAssets(appCtx, srcSubPath, dstSubPath);
} else {
copyFileFromAssets(appCtx, srcSubPath, dstSubPath);
}
}
} catch (Exception e) {
e.printStackTrace();
}
}
public static float[] parseFloatsFromString(String string, String delimiter) {
String[] pieces = string.trim().toLowerCase().split(delimiter);
float[] floats = new float[pieces.length];
for (int i = 0; i < pieces.length; i++) {
floats[i] = Float.parseFloat(pieces[i].trim());
}
return floats;
}
public static long[] parseLongsFromString(String string, String delimiter) {
String[] pieces = string.trim().toLowerCase().split(delimiter);
long[] longs = new long[pieces.length];
for (int i = 0; i < pieces.length; i++) {
longs[i] = Long.parseLong(pieces[i].trim());
}
return longs;
}
public static String getSDCardDirectory() {
return Environment.getExternalStorageDirectory().getAbsolutePath();
}
public static boolean isSupportedNPU() {
return false;
// String hardware = android.os.Build.HARDWARE;
// return hardware.equalsIgnoreCase("kirin810") || hardware.equalsIgnoreCase("kirin990");
}
public static Bitmap resizeWithStep(Bitmap bitmap, int maxLength, int step) {
int width = bitmap.getWidth();
int height = bitmap.getHeight();
int maxWH = Math.max(width, height);
float ratio = 1;
int newWidth = width;
int newHeight = height;
if (maxWH > maxLength) {
ratio = maxLength * 1.0f / maxWH;
newWidth = (int) Math.floor(ratio * width);
newHeight = (int) Math.floor(ratio * height);
}
newWidth = newWidth - newWidth % step;
if (newWidth == 0) {
newWidth = step;
}
newHeight = newHeight - newHeight % step;
if (newHeight == 0) {
newHeight = step;
}
return Bitmap.createScaledBitmap(bitmap, newWidth, newHeight, true);
}
public static Bitmap rotateBitmap(Bitmap bitmap, int orientation) {
Matrix matrix = new Matrix();
switch (orientation) {
case ExifInterface.ORIENTATION_NORMAL:
return bitmap;
case ExifInterface.ORIENTATION_FLIP_HORIZONTAL:
matrix.setScale(-1, 1);
break;
case ExifInterface.ORIENTATION_ROTATE_180:
matrix.setRotate(180);
break;
case ExifInterface.ORIENTATION_FLIP_VERTICAL:
matrix.setRotate(180);
matrix.postScale(-1, 1);
break;
case ExifInterface.ORIENTATION_TRANSPOSE:
matrix.setRotate(90);
matrix.postScale(-1, 1);
break;
case ExifInterface.ORIENTATION_ROTATE_90:
matrix.setRotate(90);
break;
case ExifInterface.ORIENTATION_TRANSVERSE:
matrix.setRotate(-90);
matrix.postScale(-1, 1);
break;
case ExifInterface.ORIENTATION_ROTATE_270:
matrix.setRotate(-90);
break;
default:
return bitmap;
}
try {
Bitmap bmRotated = Bitmap.createBitmap(bitmap, 0, 0, bitmap.getWidth(), bitmap.getHeight(), matrix, true);
bitmap.recycle();
return bmRotated;
}
catch (OutOfMemoryError e) {
e.printStackTrace();
return null;
}
}
}
<vector xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:aapt="http://schemas.android.com/aapt"
android:width="108dp"
android:height="108dp"
android:viewportWidth="108"
android:viewportHeight="108">
<path
android:fillType="evenOdd"
android:pathData="M32,64C32,64 38.39,52.99 44.13,50.95C51.37,48.37 70.14,49.57 70.14,49.57L108.26,87.69L108,109.01L75.97,107.97L32,64Z"
android:strokeWidth="1"
android:strokeColor="#00000000">
<aapt:attr name="android:fillColor">
<gradient
android:endX="78.5885"
android:endY="90.9159"
android:startX="48.7653"
android:startY="61.0927"
android:type="linear">
<item
android:color="#44000000"
android:offset="0.0" />
<item
android:color="#00000000"
android:offset="1.0" />
</gradient>
</aapt:attr>
</path>
<path
android:fillColor="#FFFFFF"
android:fillType="nonZero"
android:pathData="M66.94,46.02L66.94,46.02C72.44,50.07 76,56.61 76,64L32,64C32,56.61 35.56,50.11 40.98,46.06L36.18,41.19C35.45,40.45 35.45,39.3 36.18,38.56C36.91,37.81 38.05,37.81 38.78,38.56L44.25,44.05C47.18,42.57 50.48,41.71 54,41.71C57.48,41.71 60.78,42.57 63.68,44.05L69.11,38.56C69.84,37.81 70.98,37.81 71.71,38.56C72.44,39.3 72.44,40.45 71.71,41.19L66.94,46.02ZM62.94,56.92C64.08,56.92 65,56.01 65,54.88C65,53.76 64.08,52.85 62.94,52.85C61.8,52.85 60.88,53.76 60.88,54.88C60.88,56.01 61.8,56.92 62.94,56.92ZM45.06,56.92C46.2,56.92 47.13,56.01 47.13,54.88C47.13,53.76 46.2,52.85 45.06,52.85C43.92,52.85 43,53.76 43,54.88C43,56.01 43.92,56.92 45.06,56.92Z"
android:strokeWidth="1"
android:strokeColor="#00000000" />
</vector>
<?xml version="1.0" encoding="utf-8"?>
<vector xmlns:android="http://schemas.android.com/apk/res/android"
android:width="108dp"
android:height="108dp"
android:viewportWidth="108"
android:viewportHeight="108">
<path
android:fillColor="#008577"
android:pathData="M0,0h108v108h-108z" />
<path
android:fillColor="#00000000"
android:pathData="M9,0L9,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,0L19,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M29,0L29,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M39,0L39,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M49,0L49,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M59,0L59,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M69,0L69,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M79,0L79,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M89,0L89,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M99,0L99,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,9L108,9"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,19L108,19"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,29L108,29"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,39L108,39"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,49L108,49"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,59L108,59"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,69L108,69"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,79L108,79"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,89L108,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,99L108,99"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,29L89,29"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,39L89,39"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,49L89,49"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,59L89,59"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,69L89,69"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,79L89,79"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M29,19L29,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M39,19L39,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M49,19L49,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M59,19L59,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M69,19L69,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M79,19L79,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
</vector>
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">
<RelativeLayout
android:layout_width="match_parent"
android:layout_height="match_parent">
<LinearLayout
android:id="@+id/v_input_info"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:orientation="vertical">
<LinearLayout
android:id="@+id/btn_layout"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">
<Button
android:id="@+id/btn_load_model"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:onClick="btn_load_model_click"
android:text="加载模型" />
<Button
android:id="@+id/btn_run_model"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:onClick="btn_run_model_click"
android:text="运行模型" />
<Button
android:id="@+id/btn_take_photo"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:onClick="btn_take_photo_click"
android:text="拍照识别" />
<Button
android:id="@+id/btn_choice_img"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:onClick="btn_choice_img_click"
android:text="选取图片" />
</LinearLayout>
<TextView
android:id="@+id/tv_input_setting"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:scrollbars="vertical"
android:layout_marginLeft="12dp"
android:layout_marginRight="12dp"
android:layout_marginTop="10dp"
android:layout_marginBottom="5dp"
android:lineSpacingExtra="4dp"
android:singleLine="false"
android:maxLines="6"
android:text=""/>
<TextView
android:id="@+id/tv_model_img_status"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:scrollbars="vertical"
android:layout_marginLeft="12dp"
android:layout_marginRight="12dp"
android:layout_marginTop="-5dp"
android:layout_marginBottom="5dp"
android:lineSpacingExtra="4dp"
android:singleLine="false"
android:maxLines="6"
android:text="STATUS: ok"/>
</LinearLayout>
<RelativeLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_above="@+id/v_output_info"
android:layout_below="@+id/v_input_info">
<ImageView
android:id="@+id/iv_input_image"
android:layout_width="400dp"
android:layout_height="400dp"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:layout_marginLeft="12dp"
android:layout_marginRight="12dp"
android:layout_marginTop="5dp"
android:layout_marginBottom="5dp"
android:adjustViewBounds="true"
android:scaleType="fitCenter"/>
</RelativeLayout>
<RelativeLayout
android:id="@+id/v_output_info"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_centerHorizontal="true">
<TextView
android:id="@+id/tv_output_result"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:scrollbars="vertical"
android:layout_marginLeft="12dp"
android:layout_marginRight="12dp"
android:layout_marginTop="5dp"
android:layout_marginBottom="5dp"
android:textAlignment="center"
android:lineSpacingExtra="5dp"
android:singleLine="false"
android:maxLines="5"
android:text=""/>
<TextView
android:id="@+id/tv_inference_time"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@+id/tv_output_result"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:textAlignment="center"
android:layout_marginLeft="12dp"
android:layout_marginRight="12dp"
android:layout_marginTop="5dp"
android:layout_marginBottom="10dp"
android:text=""/>
</RelativeLayout>
</RelativeLayout>
</androidx.constraintlayout.widget.ConstraintLayout>
<?xml version="1.0" encoding="utf-8"?>
<!-- for MiniActivity Use Only -->
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintLeft_toRightOf="parent"
tools:context=".MainActivity">
<TextView
android:id="@+id/sample_text"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toBottomOf="@id/imageView"
android:scrollbars="vertical"
/>
<ImageView
android:id="@+id/imageView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:paddingTop="20dp"
android:paddingBottom="20dp"
app:layout_constraintBottom_toTopOf="@id/imageView"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:srcCompat="@tools:sample/avatars" />
<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="4dp"
android:text="Button"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
tools:layout_editor_absoluteX="161dp" />
</androidx.constraintlayout.widget.ConstraintLayout>
\ No newline at end of file
<menu xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto">
<group>
<item
android:id="@+id/settings"
android:title="Settings..."
app:showAsAction="withText"/>
</group>
</menu>
<?xml version="1.0" encoding="utf-8"?>
<adaptive-icon xmlns:android="http://schemas.android.com/apk/res/android">
<background android:drawable="@drawable/ic_launcher_background" />
<foreground android:drawable="@drawable/ic_launcher_foreground" />
</adaptive-icon>
\ No newline at end of file
<?xml version="1.0" encoding="utf-8"?>
<adaptive-icon xmlns:android="http://schemas.android.com/apk/res/android">
<background android:drawable="@drawable/ic_launcher_background" />
<foreground android:drawable="@drawable/ic_launcher_foreground" />
</adaptive-icon>
\ No newline at end of file
<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="image_name_entries">
<item>0.jpg</item>
<item>90.jpg</item>
<item>180.jpg</item>
<item>270.jpg</item>
</string-array>
<string-array name="image_name_values">
<item>images/0.jpg</item>
<item>images/90.jpg</item>
<item>images/180.jpg</item>
<item>images/270.jpg</item>
</string-array>
<string-array name="cpu_thread_num_entries">
<item>1 threads</item>
<item>2 threads</item>
<item>4 threads</item>
<item>8 threads</item>
</string-array>
<string-array name="cpu_thread_num_values">
<item>1</item>
<item>2</item>
<item>4</item>
<item>8</item>
</string-array>
<string-array name="cpu_power_mode_entries">
<item>HIGH(only big cores)</item>
<item>LOW(only LITTLE cores)</item>
<item>FULL(all cores)</item>
<item>NO_BIND(depends on system)</item>
<item>RAND_HIGH</item>
<item>RAND_LOW</item>
</string-array>
<string-array name="cpu_power_mode_values">
<item>LITE_POWER_HIGH</item>
<item>LITE_POWER_LOW</item>
<item>LITE_POWER_FULL</item>
<item>LITE_POWER_NO_BIND</item>
<item>LITE_POWER_RAND_HIGH</item>
<item>LITE_POWER_RAND_LOW</item>
</string-array>
<string-array name="input_color_format_entries">
<item>BGR color format</item>
<item>RGB color format</item>
</string-array>
<string-array name="input_color_format_values">
<item>BGR</item>
<item>RGB</item>
</string-array>
</resources>
\ No newline at end of file
<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="colorPrimary">#008577</color>
<color name="colorPrimaryDark">#00574B</color>
<color name="colorAccent">#D81B60</color>
</resources>
<resources>
<string name="app_name">OCR Chinese</string>
<string name="CHOOSE_PRE_INSTALLED_MODEL_KEY">CHOOSE_PRE_INSTALLED_MODEL_KEY</string>
<string name="ENABLE_CUSTOM_SETTINGS_KEY">ENABLE_CUSTOM_SETTINGS_KEY</string>
<string name="MODEL_PATH_KEY">MODEL_PATH_KEY</string>
<string name="LABEL_PATH_KEY">LABEL_PATH_KEY</string>
<string name="IMAGE_PATH_KEY">IMAGE_PATH_KEY</string>
<string name="CPU_THREAD_NUM_KEY">CPU_THREAD_NUM_KEY</string>
<string name="CPU_POWER_MODE_KEY">CPU_POWER_MODE_KEY</string>
<string name="INPUT_COLOR_FORMAT_KEY">INPUT_COLOR_FORMAT_KEY</string>
<string name="INPUT_SHAPE_KEY">INPUT_SHAPE_KEY</string>
<string name="INPUT_MEAN_KEY">INPUT_MEAN_KEY</string>
<string name="INPUT_STD_KEY">INPUT_STD_KEY</string>
<string name="SCORE_THRESHOLD_KEY">SCORE_THRESHOLD_KEY</string>
<string name="MODEL_PATH_DEFAULT">models/ocr_v2_for_cpu</string>
<string name="LABEL_PATH_DEFAULT">labels/ppocr_keys_v1.txt</string>
<string name="IMAGE_PATH_DEFAULT">images/0.jpg</string>
<string name="CPU_THREAD_NUM_DEFAULT">4</string>
<string name="CPU_POWER_MODE_DEFAULT">LITE_POWER_HIGH</string>
<string name="INPUT_COLOR_FORMAT_DEFAULT">BGR</string>
<string name="INPUT_SHAPE_DEFAULT">1,3,960</string>
<string name="INPUT_MEAN_DEFAULT">0.485, 0.456, 0.406</string>
<string name="INPUT_STD_DEFAULT">0.229,0.224,0.225</string>
<string name="SCORE_THRESHOLD_DEFAULT">0.1</string>
</resources>
<resources>
<!-- Base application theme. -->
<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
<!-- Customize your theme here. -->
<item name="colorPrimary">@color/colorPrimary</item>
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>
<item name="colorAccent">@color/colorAccent</item>
<item name="actionOverflowMenuStyle">@style/OverflowMenuStyle</item>
</style>
<style name="OverflowMenuStyle" parent="Widget.AppCompat.Light.PopupMenu.Overflow">
<item name="overlapAnchor">false</item>
</style>
<style name="AppTheme.NoActionBar">
<item name="windowActionBar">false</item>
<item name="windowNoTitle">true</item>
</style>
<style name="AppTheme.AppBarOverlay" parent="ThemeOverlay.AppCompat.Dark.ActionBar"/>
<style name="AppTheme.PopupOverlay" parent="ThemeOverlay.AppCompat.Light"/>
</resources>
<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android="http://schemas.android.com/apk/res/android">
<external-files-path name="my_images" path="Pictures" />
</paths>
\ No newline at end of file
<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android" >
<PreferenceCategory android:title="Model Settings">
<ListPreference
android:defaultValue="@string/MODEL_PATH_DEFAULT"
android:key="@string/CHOOSE_PRE_INSTALLED_MODEL_KEY"
android:negativeButtonText="@null"
android:positiveButtonText="@null"
android:title="Choose pre-installed models" />
<CheckBoxPreference
android:defaultValue="false"
android:key="@string/ENABLE_CUSTOM_SETTINGS_KEY"
android:summaryOn="Enable"
android:summaryOff="Disable"
android:title="Enable custom settings"/>
<EditTextPreference
android:key="@string/MODEL_PATH_KEY"
android:defaultValue="@string/MODEL_PATH_DEFAULT"
android:title="Model Path" />
<EditTextPreference
android:key="@string/LABEL_PATH_KEY"
android:defaultValue="@string/LABEL_PATH_DEFAULT"
android:title="Label Path" />
<ListPreference
android:key="@string/IMAGE_PATH_KEY"
android:defaultValue="@string/IMAGE_PATH_DEFAULT"
android:entries="@array/image_name_entries"
android:entryValues="@array/image_name_values"
android:title="Image Path" />
</PreferenceCategory>
<PreferenceCategory android:title="CPU Settings">
<ListPreference
android:defaultValue="@string/CPU_THREAD_NUM_DEFAULT"
android:key="@string/CPU_THREAD_NUM_KEY"
android:negativeButtonText="@null"
android:positiveButtonText="@null"
android:title="CPU Thread Num"
android:entries="@array/cpu_thread_num_entries"
android:entryValues="@array/cpu_thread_num_values"/>
<ListPreference
android:defaultValue="@string/CPU_POWER_MODE_DEFAULT"
android:key="@string/CPU_POWER_MODE_KEY"
android:negativeButtonText="@null"
android:positiveButtonText="@null"
android:title="CPU Power Mode"
android:entries="@array/cpu_power_mode_entries"
android:entryValues="@array/cpu_power_mode_values"/>
</PreferenceCategory>
<PreferenceCategory android:title="Input Settings">
<ListPreference
android:defaultValue="@string/INPUT_COLOR_FORMAT_DEFAULT"
android:key="@string/INPUT_COLOR_FORMAT_KEY"
android:negativeButtonText="@null"
android:positiveButtonText="@null"
android:title="Input Color Format: BGR or RGB"
android:entries="@array/input_color_format_entries"
android:entryValues="@array/input_color_format_values"/>
<EditTextPreference
android:key="@string/INPUT_SHAPE_KEY"
android:defaultValue="@string/INPUT_SHAPE_DEFAULT"
android:title="Input Shape: (1,1,max_width_height) or (1,3,max_width_height)" />
<EditTextPreference
android:key="@string/INPUT_MEAN_KEY"
android:defaultValue="@string/INPUT_MEAN_DEFAULT"
android:title="Input Mean: (channel/255-mean)/std" />
<EditTextPreference
android:key="@string/INPUT_STD_KEY"
android:defaultValue="@string/INPUT_STD_DEFAULT"
android:title="Input Std: (channel/255-mean)/std" />
</PreferenceCategory>
<PreferenceCategory android:title="Output Settings">
<EditTextPreference
android:key="@string/SCORE_THRESHOLD_KEY"
android:defaultValue="@string/SCORE_THRESHOLD_DEFAULT"
android:title="Score Threshold" />
</PreferenceCategory>
</PreferenceScreen>
package com.baidu.paddle.lite.demo.ocr;
import org.junit.Test;
import static org.junit.Assert.*;
/**
* Example local unit test, which will execute on the development machine (host).
*
* @see <a href="http://d.android.com/tools/testing">Testing documentation</a>
*/
public class ExampleUnitTest {
@Test
public void addition_isCorrect() {
assertEquals(4, 2 + 2);
}
}
\ No newline at end of file
// Top-level build file where you can add configuration options common to all sub-projects/modules.
buildscript {
repositories {
google()
jcenter()
}
dependencies {
classpath 'com.android.tools.build:gradle:4.1.2'
// NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files
}
}
allprojects {
repositories {
google()
jcenter()
}
}
task clean(type: Delete) {
delete rootProject.buildDir
}
# Project-wide Gradle settings.
# IDE (e.g. Android Studio) users:
# Gradle settings configured through the IDE *will override*
# any settings specified in this file.
# For more details on how to configure your build environment visit
# http://www.gradle.org/docs/current/userguide/build_environment.html
# Specifies the JVM arguments used for the daemon process.
# The setting is particularly useful for tweaking memory settings.
org.gradle.jvmargs=-Xmx1536m
# When configured, Gradle will run in incubating parallel mode.
# This option should only be used with decoupled projects. More details, visit
# http://www.gradle.org/docs/current/userguide/multi_project_builds.html#sec:decoupled_projects
# org.gradle.parallel=true
android.useAndroidX=true
#Thu Feb 04 20:28:08 CST 2021
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-6.5-bin.zip
#!/usr/bin/env sh
##############################################################################
##
## Gradle start up script for UN*X
##
##############################################################################
# Attempt to set APP_HOME
# Resolve links: $0 may be a link
PRG="$0"
# Need this for relative symlinks.
while [ -h "$PRG" ] ; do
ls=`ls -ld "$PRG"`
link=`expr "$ls" : '.*-> \(.*\)$'`
if expr "$link" : '/.*' > /dev/null; then
PRG="$link"
else
PRG=`dirname "$PRG"`"/$link"
fi
done
SAVED="`pwd`"
cd "`dirname \"$PRG\"`/" >/dev/null
APP_HOME="`pwd -P`"
cd "$SAVED" >/dev/null
APP_NAME="Gradle"
APP_BASE_NAME=`basename "$0"`
# Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
DEFAULT_JVM_OPTS=""
# Use the maximum available, or set MAX_FD != -1 to use that value.
MAX_FD="maximum"
warn () {
echo "$*"
}
die () {
echo
echo "$*"
echo
exit 1
}
# OS specific support (must be 'true' or 'false').
cygwin=false
msys=false
darwin=false
nonstop=false
case "`uname`" in
CYGWIN* )
cygwin=true
;;
Darwin* )
darwin=true
;;
MINGW* )
msys=true
;;
NONSTOP* )
nonstop=true
;;
esac
CLASSPATH=$APP_HOME/gradle/wrapper/gradle-wrapper.jar
# Determine the Java command to use to start the JVM.
if [ -n "$JAVA_HOME" ] ; then
if [ -x "$JAVA_HOME/jre/sh/java" ] ; then
# IBM's JDK on AIX uses strange locations for the executables
JAVACMD="$JAVA_HOME/jre/sh/java"
else
JAVACMD="$JAVA_HOME/bin/java"
fi
if [ ! -x "$JAVACMD" ] ; then
die "ERROR: JAVA_HOME is set to an invalid directory: $JAVA_HOME
Please set the JAVA_HOME variable in your environment to match the
location of your Java installation."
fi
else
JAVACMD="java"
which java >/dev/null 2>&1 || die "ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
Please set the JAVA_HOME variable in your environment to match the
location of your Java installation."
fi
# Increase the maximum file descriptors if we can.
if [ "$cygwin" = "false" -a "$darwin" = "false" -a "$nonstop" = "false" ] ; then
MAX_FD_LIMIT=`ulimit -H -n`
if [ $? -eq 0 ] ; then
if [ "$MAX_FD" = "maximum" -o "$MAX_FD" = "max" ] ; then
MAX_FD="$MAX_FD_LIMIT"
fi
ulimit -n $MAX_FD
if [ $? -ne 0 ] ; then
warn "Could not set maximum file descriptor limit: $MAX_FD"
fi
else
warn "Could not query maximum file descriptor limit: $MAX_FD_LIMIT"
fi
fi
# For Darwin, add options to specify how the application appears in the dock
if $darwin; then
GRADLE_OPTS="$GRADLE_OPTS \"-Xdock:name=$APP_NAME\" \"-Xdock:icon=$APP_HOME/media/gradle.icns\""
fi
# For Cygwin, switch paths to Windows format before running java
if $cygwin ; then
APP_HOME=`cygpath --path --mixed "$APP_HOME"`
CLASSPATH=`cygpath --path --mixed "$CLASSPATH"`
JAVACMD=`cygpath --unix "$JAVACMD"`
# We build the pattern for arguments to be converted via cygpath
ROOTDIRSRAW=`find -L / -maxdepth 1 -mindepth 1 -type d 2>/dev/null`
SEP=""
for dir in $ROOTDIRSRAW ; do
ROOTDIRS="$ROOTDIRS$SEP$dir"
SEP="|"
done
OURCYGPATTERN="(^($ROOTDIRS))"
# Add a user-defined pattern to the cygpath arguments
if [ "$GRADLE_CYGPATTERN" != "" ] ; then
OURCYGPATTERN="$OURCYGPATTERN|($GRADLE_CYGPATTERN)"
fi
# Now convert the arguments - kludge to limit ourselves to /bin/sh
i=0
for arg in "$@" ; do
CHECK=`echo "$arg"|egrep -c "$OURCYGPATTERN" -`
CHECK2=`echo "$arg"|egrep -c "^-"` ### Determine if an option
if [ $CHECK -ne 0 ] && [ $CHECK2 -eq 0 ] ; then ### Added a condition
eval `echo args$i`=`cygpath --path --ignore --mixed "$arg"`
else
eval `echo args$i`="\"$arg\""
fi
i=$((i+1))
done
case $i in
(0) set -- ;;
(1) set -- "$args0" ;;
(2) set -- "$args0" "$args1" ;;
(3) set -- "$args0" "$args1" "$args2" ;;
(4) set -- "$args0" "$args1" "$args2" "$args3" ;;
(5) set -- "$args0" "$args1" "$args2" "$args3" "$args4" ;;
(6) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" ;;
(7) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" "$args6" ;;
(8) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" "$args6" "$args7" ;;
(9) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" "$args6" "$args7" "$args8" ;;
esac
fi
# Escape application args
save () {
for i do printf %s\\n "$i" | sed "s/'/'\\\\''/g;1s/^/'/;\$s/\$/' \\\\/" ; done
echo " "
}
APP_ARGS=$(save "$@")
# Collect all arguments for the java command, following the shell quoting and substitution rules
eval set -- $DEFAULT_JVM_OPTS $JAVA_OPTS $GRADLE_OPTS "\"-Dorg.gradle.appname=$APP_BASE_NAME\"" -classpath "\"$CLASSPATH\"" org.gradle.wrapper.GradleWrapperMain "$APP_ARGS"
# by default we should be in the correct project dir, but when run from Finder on Mac, the cwd is wrong
if [ "$(uname)" = "Darwin" ] && [ "$HOME" = "$PWD" ]; then
cd "$(dirname "$0")"
fi
exec "$JAVACMD" "$@"
@if "%DEBUG%" == "" @echo off
@rem ##########################################################################
@rem
@rem Gradle startup script for Windows
@rem
@rem ##########################################################################
@rem Set local scope for the variables with windows NT shell
if "%OS%"=="Windows_NT" setlocal
set DIRNAME=%~dp0
if "%DIRNAME%" == "" set DIRNAME=.
set APP_BASE_NAME=%~n0
set APP_HOME=%DIRNAME%
@rem Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
set DEFAULT_JVM_OPTS=
@rem Find java.exe
if defined JAVA_HOME goto findJavaFromJavaHome
set JAVA_EXE=java.exe
%JAVA_EXE% -version >NUL 2>&1
if "%ERRORLEVEL%" == "0" goto init
echo.
echo ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
echo.
echo Please set the JAVA_HOME variable in your environment to match the
echo location of your Java installation.
goto fail
:findJavaFromJavaHome
set JAVA_HOME=%JAVA_HOME:"=%
set JAVA_EXE=%JAVA_HOME%/bin/java.exe
if exist "%JAVA_EXE%" goto init
echo.
echo ERROR: JAVA_HOME is set to an invalid directory: %JAVA_HOME%
echo.
echo Please set the JAVA_HOME variable in your environment to match the
echo location of your Java installation.
goto fail
:init
@rem Get command-line arguments, handling Windows variants
if not "%OS%" == "Windows_NT" goto win9xME_args
:win9xME_args
@rem Slurp the command line arguments.
set CMD_LINE_ARGS=
set _SKIP=2
:win9xME_args_slurp
if "x%~1" == "x" goto execute
set CMD_LINE_ARGS=%*
:execute
@rem Setup the command line
set CLASSPATH=%APP_HOME%\gradle\wrapper\gradle-wrapper.jar
@rem Execute Gradle
"%JAVA_EXE%" %DEFAULT_JVM_OPTS% %JAVA_OPTS% %GRADLE_OPTS% "-Dorg.gradle.appname=%APP_BASE_NAME%" -classpath "%CLASSPATH%" org.gradle.wrapper.GradleWrapperMain %CMD_LINE_ARGS%
:end
@rem End local scope for the variables with windows NT shell
if "%ERRORLEVEL%"=="0" goto mainEnd
:fail
rem Set variable GRADLE_EXIT_CONSOLE if you need the _script_ return code instead of
rem the _cmd.exe /c_ return code!
if not "" == "%GRADLE_EXIT_CONSOLE%" exit 1
exit /b 1
:mainEnd
if "%OS%"=="Windows_NT" endlocal
:omega
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册