未验证 提交 edd18b67 编写于 作者: u010070587's avatar u010070587 提交者: GitHub

Merge pull request #7206 from andyjpaddle/fix_vl

Fix visionlan predict format
......@@ -101,7 +101,7 @@ python3 tools/export_model.py -c configs/rec/rec_r45_visionlan.yml -o Global.pre
执行如下命令进行模型推理:
```shell
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words/en/word_2.png' --rec_model_dir='./inference/rec_r45_visionlan/' --rec_algorithm='VisionLAN' --rec_image_shape='3,64,256' --rec_char_dict_path='./ppocr/utils/dict36.txt'
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words/en/word_2.png' --rec_model_dir='./inference/rec_r45_visionlan/' --rec_algorithm='VisionLAN' --rec_image_shape='3,64,256' --rec_char_dict_path='./ppocr/utils/ic15_dict.txt' --use_space_char=False
# 预测文件夹下所有图像时,可修改image_dir为文件夹,如 --image_dir='./doc/imgs_words_en/'。
```
......@@ -110,7 +110,7 @@ python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words/en/word_2.png'
执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:
结果如下:
```shell
Predicts of ./doc/imgs_words/en/word_2.png:('yourself', 0.97076982)
Predicts of ./doc/imgs_words/en/word_2.png:('yourself', 0.9999493)
```
**注意**
......
......@@ -90,7 +90,7 @@ After the conversion is successful, there are three files in the directory:
For VisionLAN text recognition model inference, the following commands can be executed:
```
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words/en/word_2.png' --rec_model_dir='./inference/rec_r45_visionlan/' --rec_algorithm='VisionLAN' --rec_image_shape='3,64,256' --rec_char_dict_path='./ppocr/utils/dict36.txt'
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words/en/word_2.png' --rec_model_dir='./inference/rec_r45_visionlan/' --rec_algorithm='VisionLAN' --rec_image_shape='3,64,256' --rec_char_dict_path='./ppocr/utils/ic15_dict.txt' --use_space_char=False
```
![](../imgs_words/en/word_2.png)
......@@ -98,7 +98,7 @@ python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words/en/word_2.png'
After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows:
The result is as follows:
```shell
Predicts of ./doc/imgs_words/en/word_2.png:('yourself', 0.97076982)
Predicts of ./doc/imgs_words/en/word_2.png:('yourself', 0.9999493)
```
<a name="4-2"></a>
......
......@@ -67,7 +67,7 @@ def build_loss(config):
'ClsLoss', 'AttentionLoss', 'SRNLoss', 'PGLoss', 'CombinedLoss',
'CELoss', 'TableAttentionLoss', 'SARLoss', 'AsterLoss', 'SDMGRLoss',
'VQASerTokenLayoutLMLoss', 'LossFromOutput', 'PRENLoss', 'MultiLoss',
'TableMasterLoss', 'SPINAttentionLoss', 'VLLoss','StrokeFocusLoss'
'TableMasterLoss', 'SPINAttentionLoss', 'VLLoss', 'StrokeFocusLoss'
]
config = copy.deepcopy(config)
module_name = config.pop('name')
......
......@@ -780,7 +780,7 @@ class VLLabelDecode(BaseRecLabelDecode):
) + length[i])].topk(1)[0][:, 0]
preds_prob = paddle.exp(
paddle.log(preds_prob).sum() / (preds_prob.shape[0] + 1e-6))
text.append((preds_text, preds_prob))
text.append((preds_text, preds_prob.numpy()[0]))
if label is None:
return text
label = self.decode(label)
......
......@@ -508,10 +508,10 @@ def eval(model,
1, 2, 0).astype(np.uint8)
fm_lr = (lr_img[i].numpy() * 255).transpose(
1, 2, 0).astype(np.uint8)
cv2.imwrite("output/images/{}_{}_sr.jpg".format(sum_images,
i), fm_sr)
cv2.imwrite("output/images/{}_{}_lr.jpg".format(sum_images,
i), fm_lr)
cv2.imwrite("output/images/{}_{}_sr.jpg".format(
sum_images, i), fm_sr)
cv2.imwrite("output/images/{}_{}_lr.jpg".format(
sum_images, i), fm_lr)
else:
preds = model(images)
else:
......@@ -529,10 +529,10 @@ def eval(model,
1, 2, 0).astype(np.uint8)
fm_lr = (lr_img[i].numpy() * 255).transpose(
1, 2, 0).astype(np.uint8)
cv2.imwrite("output/images/{}_{}_sr.jpg".format(sum_images,
i), fm_sr)
cv2.imwrite("output/images/{}_{}_lr.jpg".format(sum_images,
i), fm_lr)
cv2.imwrite("output/images/{}_{}_sr.jpg".format(
sum_images, i), fm_sr)
cv2.imwrite("output/images/{}_{}_lr.jpg".format(
sum_images, i), fm_lr)
else:
preds = model(images)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册