diff --git a/doc/doc_ch/algorithm_overview.md b/doc/doc_ch/algorithm_overview.md index 6ea90d2c68177630d61a4e536da70ec4d9d61a49..361e251bc5a35812abc3081e64343b0d8c2c9c05 100755 --- a/doc/doc_ch/algorithm_overview.md +++ b/doc/doc_ch/algorithm_overview.md @@ -38,11 +38,11 @@ PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训 ### 2.文本识别算法 PaddleOCR基于动态图开源的文本识别算法列表: -- [x] CRNN[7]([paper](https://arxiv.org/abs/1507.05717) )(ppocr推荐) -- [x] Rosetta[10]([paper](https://arxiv.org/abs/1910.05085)) -- [ ] STAR-Net[11]([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)) coming soon -- [ ] RARE[12]([paper](https://arxiv.org/abs/1603.03915v1)) coming soon -- [ ] SRN[5]([paper](https://arxiv.org/abs/2003.12294)) coming soon +- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7](ppocr推荐) +- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))[10] +- [ ] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11] coming soon +- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] coming soon +- [ ] SRN([paper](https://arxiv.org/abs/2003.12294))[5] coming soon 参考[DTRB][3](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下: