*[1.4 LOAD TRAINED MODEL AND CONTINUE TRAINING](#14-load-trained-model-and-continue-training)
*[1.5 TRAINING WITH NEW BACKBONE](#15-training-with-new-backbone)
*[1.6 EVALUATION](#16-evaluation)
*[1.7 TEST](#17-test)
*[1.8 INFERENCE MODEL PREDICTION](#18-inference-model-prediction)
-[2. FAQ](#2-faq)
# 1. TEXT DETECTION
This section uses the icdar2015 dataset as an example to introduce the training, evaluation, and testing of the detection model in PaddleOCR.
## DATA PREPARATION
## 1.1 DATA PREPARATION
The icdar2015 dataset can be obtained from [official website](https://rrc.cvc.uab.es/?ch=4&com=downloads). Registration is required for downloading.
After registering and logging in, download the part marked in the red box in the figure below. And, the content downloaded by `Training Set Images` should be saved as the folder `icdar_c4_train_imgs`, and the content downloaded by `Test Set Images` is saved as the folder `ch4_test_images`
Decompress the downloaded dataset to the working directory, assuming it is decompressed under PaddleOCR/train_data/. In addition, PaddleOCR organizes many scattered annotation files into two separate annotation files for train and test respectively, which can be downloaded by wget:
```shell
# Under the PaddleOCR path
...
...
@@ -36,7 +58,7 @@ The `points` in the dictionary represent the coordinates (x, y) of the four poin
If you want to train PaddleOCR on other datasets, please build the annotation file according to the above format.
## DOWNLOAD PRETRAINED MODEL
## 1.2 DOWNLOAD PRETRAINED MODEL
First download the pretrained model. The detection model of PaddleOCR currently supports 3 backbones, namely MobileNetV3, ResNet18_vd and ResNet50_vd. You can use the model in [PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/ppcls/modeling/architectures) to replace backbone according to your needs.
And the responding download link of backbone pretrain weights can be found in (https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/README_cn.md#resnet%E5%8F%8A%E5%85%B6vd%E7%B3%BB%E5%88%97).
If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.
**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrain_weights`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrain_weights` will be loaded.
## TRAINING WITH NEW BACKBONE
## 1.5 TRAINING WITH NEW BACKBONE
The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).
...
...
@@ -136,7 +158,7 @@ After adding the four-part modules of the network, you only need to configure th
**NOTE**: More details about replace Backbone and other mudule can be found in [doc](add_new_algorithm_en.md).
## EVALUATION
## 1.6 EVALUATION
PaddleOCR calculates three indicators for evaluating performance of OCR detection task: Precision, Recall, and Hmean(F-Score).
* Note: `box_thresh` and `unclip_ratio` are parameters required for DB post-processing, and not need to be set when evaluating the EAST and SAST model.
## TEST
## 1.7 TEST
Test the detection result on a single image:
```shell
...
...
@@ -169,7 +191,7 @@ Test the detection result on all images in the folder:
The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
...
...
@@ -192,7 +214,7 @@ If it is other detection algorithms, such as the EAST, the det_algorithm paramet
Q1: The prediction results of trained model and inference model are inconsistent?
**A**: Most of the problems are caused by the inconsistency of the pre-processing and post-processing parameters during the prediction of the trained model and the pre-processing and post-processing parameters during the prediction of the inference model. Taking the model trained by the det_mv3_db.yml configuration file as an example, the solution to the problem of inconsistent prediction results between the training model and the inference model is as follows: