未验证 提交 d41d046f 编写于 作者: M MissPenguin 提交者: GitHub

Merge pull request #7284 from WenmuZhou/table_pr

update inference_en.md
...@@ -636,4 +636,6 @@ def main(): ...@@ -636,4 +636,6 @@ def main():
for item in result: for item in result:
item.pop('img') item.pop('img')
item.pop('res')
logger.info(item) logger.info(item)
logger.info('result save to {}'.format(args.output))
...@@ -106,9 +106,9 @@ PP-Structure Series Model List (Updating) ...@@ -106,9 +106,9 @@ PP-Structure Series Model List (Updating)
|model name|description|model size|download| |model name|description|model size|download|
| --- | --- | --- | --- | | --- | --- | --- | --- |
|ch_PP-OCRv3_det_slim|[New] slim quantization with distillation lightweight model, supporting Chinese, English, multilingual text detection| 1.1M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_slim_distill_train.tar)| |ch_PP-OCRv3_det| [New] Lightweight model, supporting Chinese, English, multilingual text detection | 3.8M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar)|
|ch_PP-OCRv3_rec_slim |[New] Slim qunatization with distillation lightweight model, supporting Chinese, English text recognition| 4.9M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_train.tar) | |ch_PP-OCRv3_rec| [New] Lightweight model, supporting Chinese, English, multilingual text recognition | 12.4M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar) |
|ch_ppstructure_mobile_v2.0_SLANet|Chinese table recognition model trained on PubTabNet dataset based on SLANet|9.3M|[inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_train.tar) | |ch_ppstructure_mobile_v2.0_SLANet|Chinese table recognition model based on SLANet|9.3M|[inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_train.tar) |
### 7.3 KIE model ### 7.3 KIE model
......
...@@ -120,9 +120,9 @@ PP-Structure系列模型列表(更新中) ...@@ -120,9 +120,9 @@ PP-Structure系列模型列表(更新中)
|模型名称|模型简介|模型大小|下载地址| |模型名称|模型简介|模型大小|下载地址|
| --- | --- | --- | --- | | --- | --- | --- | --- |
|ch_PP-OCRv3_det_slim|【最新】slim量化+蒸馏版超轻量模型,支持中英文、多语种文本检测| 1.1M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_slim_distill_train.tar)| |ch_PP-OCRv3_det| 【最新】超轻量模型,支持中英文、多语种文本检测 | 3.8M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar)|
|ch_PP-OCRv3_rec_slim |【最新】slim量化版超轻量模型,支持中英文、数字识别| 4.9M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_train.tar) | |ch_PP-OCRv3_rec|【最新】超轻量模型,支持中英文、数字识别|12.4M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar) |
|ch_ppstructure_mobile_v2.0_SLANet|基于SLANet在PubTabNet数据集上训练的中文表格识别模型|9.3M|[推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_train.tar) | |ch_ppstructure_mobile_v2.0_SLANet|基于SLANet的中文表格识别模型|9.3M|[推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_train.tar) |
<a name="73"></a> <a name="73"></a>
......
...@@ -16,23 +16,26 @@ cd ppstructure ...@@ -16,23 +16,26 @@ cd ppstructure
下载模型 下载模型
```bash ```bash
mkdir inference && cd inference mkdir inference && cd inference
# 下载PP-OCRv2文本检测模型并解压 # 下载PP-Structurev2版面分析模型并解压
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar && tar xf ch_PP-OCRv2_det_slim_quant_infer.tar wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_layout_infer.tar && tar xf picodet_lcnet_x1_0_layout_infer.tar
# 下载PP-OCRv2文本识别模型并解压 # 下载PP-OCRv3文本检测模型并解压
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar && tar xf ch_PP-OCRv2_rec_slim_quant_infer.tar wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar && tar xf ch_PP-OCRv3_det_infer.tar
# 下载超轻量级英文表格预测模型并解压 # 下载PP-OCRv3文本识别模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar && tar xf ch_PP-OCRv3_rec_infer.tar
# 下载PP-Structurev2表格识别模型并解压
wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf ch_ppstructure_mobile_v2.0_SLANet_infer.tar
cd .. cd ..
``` ```
<a name="1.1"></a> <a name="1.1"></a>
### 1.1 版面分析+表格识别 ### 1.1 版面分析+表格识别
```bash ```bash
python3 predict_system.py --det_model_dir=inference/ch_PP-OCRv2_det_slim_quant_infer \ python3 predict_system.py --det_model_dir=inference/ch_PP-OCRv3_det_infer \
--rec_model_dir=inference/ch_PP-OCRv2_rec_slim_quant_infer \ --rec_model_dir=inference/ch_PP-OCRv3_rec_infer \
--table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer \ --table_model_dir=inference/ch_ppstructure_mobile_v2.0_SLANet_infer \
--layout_model_dir=inference/picodet_lcnet_x1_0_layout_infer \
--image_dir=./docs/table/1.png \ --image_dir=./docs/table/1.png \
--rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \ --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \
--table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt \ --table_char_dict_path=../ppocr/utils/dict/table_structure_dict_ch.txt \
--output=../output \ --output=../output \
--vis_font_path=../doc/fonts/simfang.ttf --vis_font_path=../doc/fonts/simfang.ttf
``` ```
...@@ -41,19 +44,23 @@ python3 predict_system.py --det_model_dir=inference/ch_PP-OCRv2_det_slim_quant_i ...@@ -41,19 +44,23 @@ python3 predict_system.py --det_model_dir=inference/ch_PP-OCRv2_det_slim_quant_i
<a name="1.2"></a> <a name="1.2"></a>
### 1.2 版面分析 ### 1.2 版面分析
```bash ```bash
python3 predict_system.py --image_dir=./docs/table/1.png --table=false --ocr=false --output=../output/ python3 predict_system.py --layout_model_dir=inference/picodet_lcnet_x1_0_layout_infer \
--image_dir=./docs/table/1.png \
--output=../output \
--table=false \
--ocr=false
``` ```
运行完成后,每张图片会在`output`字段指定的目录下的`structure`目录下有一个同名目录,图片区域会被裁剪之后保存下来,图片名为表格在图片里的坐标。版面分析结果会存储在`res.txt`文件中。 运行完成后,每张图片会在`output`字段指定的目录下的`structure`目录下有一个同名目录,图片区域会被裁剪之后保存下来,图片名为表格在图片里的坐标。版面分析结果会存储在`res.txt`文件中。
<a name="1.3"></a> <a name="1.3"></a>
### 1.3 表格识别 ### 1.3 表格识别
```bash ```bash
python3 predict_system.py --det_model_dir=inference/ch_PP-OCRv2_det_slim_quant_infer \ python3 predict_system.py --det_model_dir=inference/ch_PP-OCRv3_det_infer \
--rec_model_dir=inference/ch_PP-OCRv2_rec_slim_quant_infer \ --rec_model_dir=inference/ch_PP-OCRv3_rec_infer \
--table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer \ --table_model_dir=inference/ch_ppstructure_mobile_v2.0_SLANet_infer \
--image_dir=./docs/table/table.jpg \ --image_dir=./docs/table/table.jpg \
--rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \ --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \
--table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt \ --table_char_dict_path=../ppocr/utils/dict/table_structure_dict_ch.txt \
--output=../output \ --output=../output \
--vis_font_path=../doc/fonts/simfang.ttf \ --vis_font_path=../doc/fonts/simfang.ttf \
--layout=false --layout=false
......
...@@ -18,23 +18,26 @@ download model ...@@ -18,23 +18,26 @@ download model
```bash ```bash
mkdir inference && cd inference mkdir inference && cd inference
# Download the PP-OCRv2 text detection model and unzip it # Download the PP-Structurev2 layout analysis model and unzip it
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar && tar xf ch_PP-OCRv2_det_slim_quant_infer.tar wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_layout_infer.tar && tar xf picodet_lcnet_x1_0_layout_infer.tar
# Download the PP-OCRv2 text recognition model and unzip it # Download the PP-OCRv3 text detection model and unzip it
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar && tar xf ch_PP-OCRv2_rec_slim_quant_infer.tar wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar && tar xf ch_PP-OCRv3_det_infer.tar
# Download the ultra-lightweight English table structure model and unzip it # Download the PP-OCRv3 text recognition model and unzip it
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar && tar xf ch_PP-OCRv3_rec_infer.tar
# Download the PP-Structurev2 form recognition model and unzip it
wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf ch_ppstructure_mobile_v2.0_SLANet_infer.tar
cd .. cd ..
``` ```
<a name="1.1"></a> <a name="1.1"></a>
### 1.1 layout analysis + table recognition ### 1.1 layout analysis + table recognition
```bash ```bash
python3 predict_system.py --det_model_dir=inference/ch_PP-OCRv2_det_slim_quant_infer \ python3 predict_system.py --det_model_dir=inference/ch_PP-OCRv3_det_infer \
--rec_model_dir=inference/ch_PP-OCRv2_rec_slim_quant_infer \ --rec_model_dir=inference/ch_PP-OCRv3_rec_infer \
--table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer \ --table_model_dir=inference/ch_ppstructure_mobile_v2.0_SLANet_infer \
--layout_model_dir=inference/picodet_lcnet_x1_0_layout_infer \
--image_dir=./docs/table/1.png \ --image_dir=./docs/table/1.png \
--rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \ --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \
--table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt \ --table_char_dict_path=../ppocr/utils/dict/table_structure_dict_ch.txt \
--output=../output \ --output=../output \
--vis_font_path=../doc/fonts/simfang.ttf --vis_font_path=../doc/fonts/simfang.ttf
``` ```
...@@ -43,19 +46,23 @@ After the operation is completed, each image will have a directory with the same ...@@ -43,19 +46,23 @@ After the operation is completed, each image will have a directory with the same
<a name="1.2"></a> <a name="1.2"></a>
### 1.2 layout analysis ### 1.2 layout analysis
```bash ```bash
python3 predict_system.py --image_dir=./docs/table/1.png --table=false --ocr=false --output=../output/ python3 predict_system.py --layout_model_dir=inference/picodet_lcnet_x1_0_layout_infer \
--image_dir=./docs/table/1.png \
--output=../output \
--table=false \
--ocr=false
``` ```
After the operation is completed, each image will have a directory with the same name in the `structure` directory under the directory specified by the `output` field. Each picture in image will be cropped and saved. The filename of picture area is their coordinates in the image. Layout analysis results will be stored in the `res.txt` file After the operation is completed, each image will have a directory with the same name in the `structure` directory under the directory specified by the `output` field. Each picture in image will be cropped and saved. The filename of picture area is their coordinates in the image. Layout analysis results will be stored in the `res.txt` file
<a name="1.3"></a> <a name="1.3"></a>
### 1.3 table recognition ### 1.3 table recognition
```bash ```bash
python3 predict_system.py --det_model_dir=inference/ch_PP-OCRv2_det_slim_quant_infer \ python3 predict_system.py --det_model_dir=inference/ch_PP-OCRv3_det_infer \
--rec_model_dir=inference/ch_PP-OCRv2_rec_slim_quant_infer \ --rec_model_dir=inference/ch_PP-OCRv3_rec_infer \
--table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer \ --table_model_dir=inference/ch_ppstructure_mobile_v2.0_SLANet_infer \
--image_dir=./docs/table/table.jpg \ --image_dir=./docs/table/table.jpg \
--rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \ --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \
--table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt \ --table_char_dict_path=../ppocr/utils/dict/table_structure_dict_ch.txt \
--output=../output \ --output=../output \
--vis_font_path=../doc/fonts/simfang.ttf \ --vis_font_path=../doc/fonts/simfang.ttf \
--layout=false --layout=false
......
...@@ -24,8 +24,8 @@ ...@@ -24,8 +24,8 @@
|模型名称|模型简介|推理模型大小|下载地址| |模型名称|模型简介|推理模型大小|下载地址|
| --- | --- | --- | --- | | --- | --- | --- | --- |
|en_ppocr_mobile_v2.0_table_det|PubLayNet数据集训练的英文表格场景的文字检测|4.7M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_det_train.tar) | |en_ppocr_mobile_v2.0_table_det|PubTabNet数据集训练的英文表格场景的文字检测|4.7M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_det_train.tar) |
|en_ppocr_mobile_v2.0_table_rec|PubLayNet数据集训练的英文表格场景的文字识别|6.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_rec_train.tar) | |en_ppocr_mobile_v2.0_table_rec|PubTabNet数据集训练的英文表格场景的文字识别|6.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_rec_train.tar) |
如需要使用其他OCR模型,可以在 [PP-OCR model_list](../../doc/doc_ch/models_list.md) 下载模型或者使用自己训练好的模型配置到 `det_model_dir`, `rec_model_dir`两个字段即可。 如需要使用其他OCR模型,可以在 [PP-OCR model_list](../../doc/doc_ch/models_list.md) 下载模型或者使用自己训练好的模型配置到 `det_model_dir`, `rec_model_dir`两个字段即可。
...@@ -36,7 +36,7 @@ ...@@ -36,7 +36,7 @@
| --- | --- | --- | --- | | --- | --- | --- | --- |
|en_ppocr_mobile_v2.0_table_structure|基于TableRec-RARE在PubTabNet数据集上训练的英文表格识别模型|6.8M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) | |en_ppocr_mobile_v2.0_table_structure|基于TableRec-RARE在PubTabNet数据集上训练的英文表格识别模型|6.8M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) |
|en_ppstructure_mobile_v2.0_SLANet|基于SLANet在PubTabNet数据集上训练的英文表格识别模型|9.2M|[推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_train.tar) | |en_ppstructure_mobile_v2.0_SLANet|基于SLANet在PubTabNet数据集上训练的英文表格识别模型|9.2M|[推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_train.tar) |
|ch_ppstructure_mobile_v2.0_SLANet|基于SLANet在PubTabNet数据集上训练的中文表格识别模型|9.3M|[推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_train.tar) | |ch_ppstructure_mobile_v2.0_SLANet|基于SLANet的中文表格识别模型|9.3M|[推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_train.tar) |
<a name="3"></a> <a name="3"></a>
......
...@@ -36,7 +36,7 @@ If you need to use other OCR models, you can download the model in [PP-OCR model ...@@ -36,7 +36,7 @@ If you need to use other OCR models, you can download the model in [PP-OCR model
| --- |-----------------------------------------------------------------------------| --- | --- | | --- |-----------------------------------------------------------------------------| --- | --- |
|en_ppocr_mobile_v2.0_table_structure| English table recognition model trained on PubTabNet dataset based on TableRec-RARE |6.8M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) | |en_ppocr_mobile_v2.0_table_structure| English table recognition model trained on PubTabNet dataset based on TableRec-RARE |6.8M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) |
|en_ppstructure_mobile_v2.0_SLANet|English table recognition model trained on PubTabNet dataset based on SLANet|9.2M|[inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_train.tar) | |en_ppstructure_mobile_v2.0_SLANet|English table recognition model trained on PubTabNet dataset based on SLANet|9.2M|[inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_train.tar) |
|ch_ppstructure_mobile_v2.0_SLANet|Chinese table recognition model trained on PubTabNet dataset based on SLANet|9.3M|[inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_train.tar) | |ch_ppstructure_mobile_v2.0_SLANet|Chinese table recognition model based on SLANet|9.3M|[inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_train.tar) |
<a name="3"></a> <a name="3"></a>
## 3. KIE ## 3. KIE
......
...@@ -59,16 +59,16 @@ cd PaddleOCR/ppstructure ...@@ -59,16 +59,16 @@ cd PaddleOCR/ppstructure
# download model # download model
mkdir inference && cd inference mkdir inference && cd inference
# Download the PP-OCRv3 text detection model and unzip it # Download the PP-OCRv3 text detection model and unzip it
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_slim_infer.tar && tar xf ch_PP-OCRv3_det_slim_infer.tar wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar && tar xf ch_PP-OCRv3_det_infer.tar
# Download the PP-OCRv3 text recognition model and unzip it # Download the PP-OCRv3 text recognition model and unzip it
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_infer.tar && tar xf ch_PP-OCRv3_rec_slim_infer.tar wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar && tar xf ch_PP-OCRv3_rec_infer.tar
# Download the PP-Structurev2 form recognition model and unzip it # Download the PP-Structurev2 form recognition model and unzip it
wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf ch_ppstructure_mobile_v2.0_SLANet_infer.tar wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf ch_ppstructure_mobile_v2.0_SLANet_infer.tar
cd .. cd ..
# run # run
python3.7 table/predict_table.py \ python3.7 table/predict_table.py \
--det_model_dir=inference/ch_PP-OCRv3_det_slim_infer \ --det_model_dir=inference/ch_PP-OCRv3_det_infer \
--rec_model_dir=inference/ch_PP-OCRv3_rec_slim_infer \ --rec_model_dir=inference/ch_PP-OCRv3_rec_infer \
--table_model_dir=inference/ch_ppstructure_mobile_v2.0_SLANet_infer \ --table_model_dir=inference/ch_ppstructure_mobile_v2.0_SLANet_infer \
--rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \ --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \
--table_char_dict_path=../ppocr/utils/dict/table_structure_dict_ch.txt \ --table_char_dict_path=../ppocr/utils/dict/table_structure_dict_ch.txt \
......
...@@ -64,16 +64,16 @@ cd PaddleOCR/ppstructure ...@@ -64,16 +64,16 @@ cd PaddleOCR/ppstructure
# 下载模型 # 下载模型
mkdir inference && cd inference mkdir inference && cd inference
# 下载PP-OCRv3文本检测模型并解压 # 下载PP-OCRv3文本检测模型并解压
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_slim_infer.tar && tar xf ch_PP-OCRv3_det_slim_infer.tar wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar && tar xf ch_PP-OCRv3_det_infer.tar
# 下载PP-OCRv3文本识别模型并解压 # 下载PP-OCRv3文本识别模型并解压
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_infer.tar && tar xf ch_PP-OCRv3_rec_slim_infer.tar wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar && tar xf ch_PP-OCRv3_rec_infer.tar
# 下载PP-Structurev2表格识别模型并解压 # 下载PP-Structurev2表格识别模型并解压
wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf ch_ppstructure_mobile_v2.0_SLANet_infer.tar wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf ch_ppstructure_mobile_v2.0_SLANet_infer.tar
cd .. cd ..
# 执行表格识别 # 执行表格识别
python table/predict_table.py \ python table/predict_table.py \
--det_model_dir=inference/ch_PP-OCRv3_det_slim_infer \ --det_model_dir=inference/ch_PP-OCRv3_det_infer \
--rec_model_dir=inference/ch_PP-OCRv3_rec_slim_infer \ --rec_model_dir=inference/ch_PP-OCRv3_rec_infer \
--table_model_dir=inference/ch_ppstructure_mobile_v2.0_SLANet_infer \ --table_model_dir=inference/ch_ppstructure_mobile_v2.0_SLANet_infer \
--rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \ --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \
--table_char_dict_path=../ppocr/utils/dict/table_structure_dict_ch.txt \ --table_char_dict_path=../ppocr/utils/dict/table_structure_dict_ch.txt \
......
...@@ -38,7 +38,7 @@ def init_args(): ...@@ -38,7 +38,7 @@ def init_args():
parser.add_argument( parser.add_argument(
"--layout_dict_path", "--layout_dict_path",
type=str, type=str,
default="../ppocr/utils/dict/layout_dict/layout_pubalynet_dict.txt") default="../ppocr/utils/dict/layout_dict/layout_publaynet_dict.txt")
parser.add_argument( parser.add_argument(
"--layout_score_threshold", "--layout_score_threshold",
type=float, type=float,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册