未验证 提交 d3837d68 编写于 作者: A andyjpaddle 提交者: GitHub

Merge pull request #6450 from tink2123/update_doc_issue

update doc for issues
......@@ -83,7 +83,7 @@ void CRNNRecognizer::Run(std::vector<cv::Mat> img_list,
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
std::multiplies<int>());
predict_batch.resize(out_num);
// predict_batch is the result of Last FC with softmax
output_t->CopyToCpu(predict_batch.data());
auto inference_end = std::chrono::steady_clock::now();
inference_diff += inference_end - inference_start;
......@@ -98,9 +98,11 @@ void CRNNRecognizer::Run(std::vector<cv::Mat> img_list,
float max_value = 0.0f;
for (int n = 0; n < predict_shape[1]; n++) {
// get idx
argmax_idx = int(Utility::argmax(
&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
// get score
max_value = float(*std::max_element(
&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
......
......@@ -720,6 +720,13 @@ C++TensorRT预测需要使用支持TRT的预测库并在编译时打开[-DWITH_T
注:建议使用TensorRT大于等于6.1.0.5以上的版本。
#### Q: 为什么识别模型做预测的时候,预测图片的数量数量还会影响预测的精度
**A**: 推理时识别模型默认的batch_size=6, 如预测图片长度变化大,可能影响预测效果。如果出现上述问题可在推理的时候设置识别bs=1,命令如下:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --rec_batch_num=1
```
<a name="213"></a>
### 2.13 推理部署
......
......@@ -217,6 +217,30 @@ python3 tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pre
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=./pretrain_models/en_PP-OCRv3_rec_train/best_accuracy
```
正常启动训练后,会看到以下log输出:
```
[2022/02/22 07:58:05] root INFO: epoch: [1/800], iter: 10, lr: 0.000000, loss: 0.754281, acc: 0.000000, norm_edit_dis: 0.000008, reader_cost: 0.55541 s, batch_cost: 0.91654 s, samples: 1408, ips: 153.62133
[2022/02/22 07:58:13] root INFO: epoch: [1/800], iter: 20, lr: 0.000001, loss: 0.924677, acc: 0.000000, norm_edit_dis: 0.000008, reader_cost: 0.00236 s, batch_cost: 0.28528 s, samples: 1280, ips: 448.68599
[2022/02/22 07:58:23] root INFO: epoch: [1/800], iter: 30, lr: 0.000002, loss: 0.967231, acc: 0.000000, norm_edit_dis: 0.000008, reader_cost: 0.14527 s, batch_cost: 0.42714 s, samples: 1280, ips: 299.66507
[2022/02/22 07:58:31] root INFO: epoch: [1/800], iter: 40, lr: 0.000003, loss: 0.895318, acc: 0.000000, norm_edit_dis: 0.000008, reader_cost: 0.00173 s, batch_cost: 0.27719 s, samples: 1280, ips: 461.77252
```
log 中自动打印如下信息:
| 字段 | 含义 |
| :----: | :------: |
| epoch | 当前迭代轮次 |
| iter | 当前迭代次数 |
| lr | 当前学习率 |
| loss | 当前损失函数 |
| acc | 当前batch的准确率 |
| norm_edit_dis | 当前 batch 的编辑距离 |
| reader_cost | 当前 batch 数据处理耗时 |
| batch_cost | 当前 batch 总耗时 |
| samples | 当前 batch 内的样本数 |
| ips | 每秒处理图片的数量 |
PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml` 中修改 `eval_batch_step` 设置评估频率,默认每500个iter评估一次。评估过程中默认将最佳acc模型,保存为 `output/en_PP-OCRv3_rec/best_accuracy`
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册