diff --git a/doc/doc_ch/algorithm_overview.md b/doc/doc_ch/algorithm_overview.md
index 475db67935893e82928a633e66fc872e8245ebe5..d047959dbacc53da596d567eb9fd054f7772e4a5 100644
--- a/doc/doc_ch/algorithm_overview.md
+++ b/doc/doc_ch/algorithm_overview.md
@@ -54,11 +54,6 @@ PaddleOCR开源的文本识别算法列表:
|CRNN|MobileNetV3||rec_mv3_none_bilstm_ctc|[敬请期待]()|
|STAR-Net|Resnet34_vd||rec_r34_vd_tps_bilstm_ctc|[敬请期待]()|
|STAR-Net|MobileNetV3||rec_mv3_tps_bilstm_ctc|[敬请期待]()|
-|RARE|Resnet34_vd||rec_r34_vd_tps_bilstm_attn|[敬请期待]()|
-|RARE|MobileNetV3||rec_mv3_tps_bilstm_attn|[敬请期待]()|
-|SRN|Resnet50_vd_fpn||rec_r50fpn_vd_none_srn|[敬请期待]()|
-**说明:** SRN模型使用了数据扰动方法对上述提到对两个训练集进行增广,增广后的数据可以在[百度网盘](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA)上下载,提取码: y3ry。
-原始论文使用两阶段训练平均精度为89.74%,PaddleOCR中使用one-stage训练,平均精度为88.33%。两种预训练权重均在[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)中。
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)。
diff --git a/doc/doc_ch/recognition.md b/doc/doc_ch/recognition.md
index 6c5ea02fbf894829785dc6b0ab566203d71a3ab6..6c5efc0674f23804c63dc4e10ed9fffa722b85a6 100644
--- a/doc/doc_ch/recognition.md
+++ b/doc/doc_ch/recognition.md
@@ -166,9 +166,9 @@ tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar
*如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false*
```
-# GPU训练 支持单卡,多卡训练,通过selected_gpus参数指定卡号
+# GPU训练 支持单卡,多卡训练,通过--gpus参数指定卡号
# 训练icdar15英文数据 并将训练日志保存为 tain_rec.log
-python3 -m paddle.distributed.launch --selected_gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml
```
- 数据增强
@@ -331,9 +331,8 @@ Eval:
*注意* 评估时必须确保配置文件中 infer_img 字段为空
```
-export CUDA_VISIBLE_DEVICES=0
# GPU 评估, Global.checkpoints 为待测权重
-python3 tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
+python3 --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
diff --git a/doc/doc_en/algorithm_overview_en.md b/doc/doc_en/algorithm_overview_en.md
index 6cdf310f04e5e386e2292984a401a023d27bad30..60c44865a74d08f6f77af98812266370e2f68309 100644
--- a/doc/doc_en/algorithm_overview_en.md
+++ b/doc/doc_en/algorithm_overview_en.md
@@ -55,12 +55,6 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|CRNN|MobileNetV3||rec_mv3_none_bilstm_ctc|[Coming soon]()|
|STAR-Net|Resnet34_vd||rec_r34_vd_tps_bilstm_ctc|[Coming soon]()|
|STAR-Net|MobileNetV3||rec_mv3_tps_bilstm_ctc|[Coming soon]()|
-|RARE|Resnet34_vd||rec_r34_vd_tps_bilstm_attn|[Coming soon]()|
-|RARE|MobileNetV3||rec_mv3_tps_bilstm_attn|[Coming soon]()|
-|SRN|Resnet50_vd_fpn||rec_r50fpn_vd_none_srn|[Coming soon]()|
-**Note:** SRN model uses data expansion method to expand the two training sets mentioned above, and the expanded data can be downloaded from [Baidu Drive](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA) (download code: y3ry).
-
-The average accuracy of the two-stage training in the original paper is 89.74%, and that of one stage training in paddleocr is 88.33%. Both pre-trained weights can be downloaded [here](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar).
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
diff --git a/doc/doc_en/recognition_en.md b/doc/doc_en/recognition_en.md
index 41b00c52a7780d02c144c251553f427e5b875e5e..daa12820fd83a1dd57960502c0b0f2f860c153d4 100644
--- a/doc/doc_en/recognition_en.md
+++ b/doc/doc_en/recognition_en.md
@@ -158,10 +158,9 @@ tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar
Start training:
```
-# GPU training Support single card and multi-card training, specify the card number through CUDA_VISIBLE_DEVICES
-export CUDA_VISIBLE_DEVICES=0,1,2,3
+# GPU training Support single card and multi-card training, specify the card number through --gpus
# Training icdar15 English data and saving the log as train_rec.log
-python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml
```
- Data Augmentation
@@ -199,39 +198,69 @@ If the evaluation set is large, the test will be time-consuming. It is recommend
| rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc |
For training Chinese data, it is recommended to use
-训练中文数据,推荐使用[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
+[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
co
-Take `rec_mv3_none_none_ctc.yml` as an example:
+Take `rec_chinese_lite_train_v1.1.yml` as an example:
```
Global:
...
- # Modify image_shape to fit long text
- image_shape: [3, 32, 320]
- ...
+ # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
+ character_dict_path: ppocr/utils/ppocr_keys_v1.txt
# Modify character type
character_type: ch
- # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
- character_dict_path: ./ppocr/utils/ppocr_keys_v1.txt
...
- # Modify reader type
- reader_yml: ./configs/rec/rec_chinese_reader.yml
- # Whether to use data augmentation
- distort: true
# Whether to recognize spaces
- use_space_char: true
- ...
+ use_space_char: False
-...
Optimizer:
...
# Add learning rate decay strategy
- decay:
- function: cosine_decay
- # Each epoch contains iter number
- step_each_epoch: 20
- # Total epoch number
- total_epoch: 1000
+ lr:
+ name: Cosine
+ learning_rate: 0.001
+ ...
+
+...
+
+Train:
+ dataset:
+ # Type of dataset,we support LMDBDateSet and SimpleDataSet
+ name: SimpleDataSet
+ # Path of dataset
+ data_dir: ./train_data/
+ # Path of train list
+ label_file_list: ["./train_data/train_list.txt"]
+ transforms:
+ ...
+ - RecResizeImg:
+ # Modify image_shape to fit long text
+ image_shape: [3, 32, 320]
+ ...
+ loader:
+ ...
+ # Train batch_size for Single card
+ batch_size_per_card: 256
+ ...
+
+Eval:
+ dataset:
+ # Type of dataset,we support LMDBDateSet and SimpleDataSet
+ name: SimpleDataSet
+ # Path of dataset
+ data_dir: ./train_data
+ # Path of eval list
+ label_file_list: ["./train_data/val_list.txt"]
+ transforms:
+ ...
+ - RecResizeImg:
+ # Modify image_shape to fit long text
+ image_shape: [3, 32, 320]
+ ...
+ loader:
+ # Eval batch_size for Single card
+ batch_size_per_card: 256
+ ...
```
**Note that the configuration file for prediction/evaluation must be consistent with the training.**
@@ -257,18 +286,33 @@ Take `rec_french_lite_train` as an example:
```
Global:
...
- # Add a custom dictionary, if you modify the dictionary
- # please point the path to the new dictionary
+ # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
character_dict_path: ./ppocr/utils/dict/french_dict.txt
- # Add data augmentation during training
- distort: true
- # Identify spaces
- use_space_char: true
- ...
- # Modify reader type
- reader_yml: ./configs/rec/multi_languages/rec_french_reader.yml
...
+ # Whether to recognize spaces
+ use_space_char: False
+
...
+
+Train:
+ dataset:
+ # Type of dataset,we support LMDBDateSet and SimpleDataSet
+ name: SimpleDataSet
+ # Path of dataset
+ data_dir: ./train_data/
+ # Path of train list
+ label_file_list: ["./train_data/french_train.txt"]
+ ...
+
+Eval:
+ dataset:
+ # Type of dataset,we support LMDBDateSet and SimpleDataSet
+ name: SimpleDataSet
+ # Path of dataset
+ data_dir: ./train_data
+ # Path of eval list
+ label_file_list: ["./train_data/french_val.txt"]
+ ...
```
@@ -277,9 +321,8 @@ Global:
The evaluation data set can be modified via `configs/rec/rec_icdar15_reader.yml` setting of `label_file_path` in EvalReader.
```
-export CUDA_VISIBLE_DEVICES=0
# GPU evaluation, Global.checkpoints is the weight to be tested
-python3 tools/eval.py -c configs/rec/rec_icdar15_reader.yml -o Global.checkpoints={path/to/weights}/best_accuracy
+python3 --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_reader.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```