**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrain_weights`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrain_weights` will be loaded.
PaddleOCR calculates three indicators for evaluating performance of OCR detection task: Precision, Recall, and Hmean.
Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `det_db_mv3_v1.1.yml`
Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `det_db_mv3.yml`
When evaluating, set post-processing parameters `box_thresh=0.6`, `unclip_ratio=1.5`. If you use different datasets, different models for training, these two parameters should be adjusted for better result.
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file.
You can also visit [DockerHub](https://hub.docker.com/r/paddlepaddle/paddle/tags/) to get the image that fits your machine.
```
...
...
@@ -35,29 +33,15 @@ You can also visit [DockerHub](https://hub.docker.com/r/paddlepaddle/paddle/tags
sudo docker container exec -it ppocr /bin/bash
```
Note: If the docker pull is too slow, you can download and load the docker image manually according to the following steps. Take cuda9 docker for example, you only need to change cuda9 to cuda10 to use cuda10 docker:
```
# Download the CUDA9 docker compressed file and unzip it
For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation.