From ba58a2a631899d44c8e3a5060f6e705c80ef8a15 Mon Sep 17 00:00:00 2001 From: licx Date: Tue, 18 Aug 2020 11:44:24 +0800 Subject: [PATCH] update docs --- README_cn.md | 6 ++++-- doc/doc_ch/detection.md | 44 +++++++++++++++++++------------------- doc/doc_en/detection_en.md | 15 +++++++------ 3 files changed, 35 insertions(+), 30 deletions(-) diff --git a/README_cn.md b/README_cn.md index c797097c..2f5351a8 100644 --- a/README_cn.md +++ b/README_cn.md @@ -110,6 +110,9 @@ PaddleOCR开源的文本检测算法列表: |-|-|-|-|-|-| |SAST|ResNet50_vd|88.74%|79.80%|84.03%|[下载链接](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)| +**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:[百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi) + + 使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集共3w张数据,训练中文检测模型的相关配置和预训练文件如下: |模型|骨干网络|配置文件|预训练模型| @@ -145,8 +148,7 @@ PaddleOCR开源的文本识别算法列表: |RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)| |SRN|Resnet50_vd_fpn|88.33%|rec_r50fpn_vd_none_srn|[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)| -**说明:** SRN模型使用了数据扰动方法对上述提到对两个训练集进行增广,增广后的数据可以在[百度网盘](todo)上下载。 -原始论文使用两阶段训练平均精度为89.74%,PaddleOCR中使用one-stage训练,平均精度为88.33%。两种预训练权重均在[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)中。 +**说明:** SRN模型使用了数据扰动方法对上述提到对两个训练集进行增广,增广后的数据可以在[百度网盘](todo)上下载。原始论文使用两阶段训练平均精度为89.74%,PaddleOCR中使用one-stage训练,平均精度为88.33%。两种预训练权重均在[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)中。 使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集根据真值将图crop出来30w数据,进行位置校准。此外基于LSVT语料生成500w合成数据训练中文模型,相关配置和预训练文件如下: diff --git a/doc/doc_ch/detection.md b/doc/doc_ch/detection.md index 850f67ca..1b30c9e8 100644 --- a/doc/doc_ch/detection.md +++ b/doc/doc_ch/detection.md @@ -1,13 +1,13 @@ # 文字检测 -本节以icdar15数据集为例,介绍PaddleOCR中检测模型的训练、评估与测试。 +本节以icdar2015数据集为例,介绍PaddleOCR中检测模型的训练、评估与测试。 ## 数据准备 icdar2015数据集可以从[官网](https://rrc.cvc.uab.es/?ch=4&com=downloads)下载到,首次下载需注册。 将下载到的数据集解压到工作目录下,假设解压在 PaddleOCR/train_data/ 下。另外,PaddleOCR将零散的标注文件整理成单独的标注文件 ,您可以通过wget的方式进行下载。 -``` +```shell # 在PaddleOCR路径下 cd PaddleOCR/ wget -P ./train_data/ https://paddleocr.bj.bcebos.com/dataset/train_icdar2015_label.txt @@ -23,21 +23,21 @@ wget -P ./train_data/ https://paddleocr.bj.bcebos.com/dataset/test_icdar2015_la └─ test_icdar2015_label.txt icdar数据集的测试标注 ``` -提供的标注文件格式为,其中中间是"\t"分隔: +提供的标注文件格式如下,中间用"\t"分隔: ``` " 图像文件名 json.dumps编码的图像标注信息" ch4_test_images/img_61.jpg [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}] ``` json.dumps编码前的图像标注信息是包含多个字典的list,字典中的 `points` 表示文本框的四个点的坐标(x, y),从左上角的点开始顺时针排列。 -`transcription` 表示当前文本框的文字,在文本检测任务中并不需要这个信息。 -如果您想在其他数据集上训练PaddleOCR,可以按照上述形式构建标注文件。 +`transcription` 表示当前文本框的文字,**当其内容为“###”时,表示该文本框无效,在训练时会跳过。** +如果您想在其他数据集上训练,可以按照上述形式构建标注文件。 ## 快速启动训练 首先下载模型backbone的pretrain model,PaddleOCR的检测模型目前支持两种backbone,分别是MobileNetV3、ResNet50_vd, 您可以根据需求使用[PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/master/ppcls/modeling/architectures)中的模型更换backbone。 -``` +```shell cd PaddleOCR/ # 下载MobileNetV3的预训练模型 wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_5_pretrained.tar @@ -45,7 +45,7 @@ wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/Mob wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar # 解压预训练模型文件,以MobileNetV3为例 -tar xf ./pretrain_models/MobileNetV3_large_x0_5_pretrained.tar ./pretrain_models/ +tar -xf ./pretrain_models/MobileNetV3_large_x0_5_pretrained.tar ./pretrain_models/ # 注:正确解压backbone预训练权重文件后,文件夹下包含众多以网络层命名的权重文件,格式如下: ./pretrain_models/MobileNetV3_large_x0_5_pretrained/ @@ -57,11 +57,11 @@ tar xf ./pretrain_models/MobileNetV3_large_x0_5_pretrained.tar ./pretrain_models ``` -**启动训练** +#### 启动训练 *如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false* -``` +```python python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./pretrain_models/MobileNetV3_large_x0_5_pretrained/ ``` @@ -69,52 +69,52 @@ python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights= 有关配置文件的详细解释,请参考[链接](./config.md)。 您也可以通过-o参数在不需要修改yml文件的情况下,改变训练的参数,比如,调整训练的学习率为0.0001 -``` +```python python3 tools/train.py -c configs/det/det_mv3_db.yml -o Optimizer.base_lr=0.0001 ``` -**断点训练** +#### 断点训练 如果训练程序中断,如果希望加载训练中断的模型从而恢复训练,可以通过指定Global.checkpoints指定要加载的模型路径: -``` +```python python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./your/trained/model ``` -**注意**:Global.checkpoints的优先级高于Global.pretrain_weights的优先级,即同时指定两个参数时,优先加载Global.checkpoints指定的模型,如果Global.checkpoints指定的模型路径有误,会加载Global.pretrain_weights指定的模型。 +**注意**:`Global.checkpoints`的优先级高于`Global.pretrain_weights`的优先级,即同时指定两个参数时,优先加载`Global.checkpoints`指定的模型,如果`Global.checkpoints`指定的模型路径有误,会加载`Global.pretrain_weights`指定的模型。 ## 指标评估 PaddleOCR计算三个OCR检测相关的指标,分别是:Precision、Recall、Hmean。 -运行如下代码,根据配置文件det_db_mv3.yml中save_res_path指定的测试集检测结果文件,计算评估指标。 +运行如下代码,根据配置文件`det_db_mv3.yml`中`save_res_path`指定的测试集检测结果文件,计算评估指标。 -评估时设置后处理参数box_thresh=0.6,unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化 -``` +评估时设置后处理参数`box_thresh=0.6`,`unclip_ratio=1.5`,使用不同数据集、不同模型训练,可调整这两个参数进行优化 +```python python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5 ``` -训练中模型参数默认保存在Global.save_model_dir目录下。在评估指标时,需要设置Global.checkpoints指向保存的参数文件。 +训练中模型参数默认保存在`Global.save_model_dir`目录下。在评估指标时,需要设置`Global.checkpoints`指向保存的参数文件。 比如: -``` +```python python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5 ``` -* 注:box_thresh、unclip_ratio是DB后处理所需要的参数,在评估EAST模型时不需要设置 +* 注:`box_thresh`、`unclip_ratio`是DB后处理所需要的参数,在评估EAST模型时不需要设置 ## 测试检测效果 测试单张图像的检测效果 -``` +```python python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o TestReader.infer_img="./doc/imgs_en/img_10.jpg" Global.checkpoints="./output/det_db/best_accuracy" ``` 测试DB模型时,调整后处理阈值, -``` +```python python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o TestReader.infer_img="./doc/imgs_en/img_10.jpg" Global.checkpoints="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5 ``` 测试文件夹下所有图像的检测效果 -``` +```python python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o TestReader.infer_img="./doc/imgs_en/" Global.checkpoints="./output/det_db/best_accuracy" ``` diff --git a/doc/doc_en/detection_en.md b/doc/doc_en/detection_en.md index f22c574b..80e4a104 100644 --- a/doc/doc_en/detection_en.md +++ b/doc/doc_en/detection_en.md @@ -1,6 +1,6 @@ # TEXT DETECTION -This section uses the icdar15 dataset as an example to introduce the training, evaluation, and testing of the detection model in PaddleOCR. +This section uses the icdar2015 dataset as an example to introduce the training, evaluation, and testing of the detection model in PaddleOCR. ## DATA PREPARATION The icdar2015 dataset can be obtained from [official website](https://rrc.cvc.uab.es/?ch=4&com=downloads). Registration is required for downloading. @@ -27,10 +27,13 @@ The provided annotation file format is as follow, seperated by "\t": " Image file name Image annotation information encoded by json.dumps" ch4_test_images/img_61.jpg [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}] ``` -The image annotation after json.dumps() encoding is a list containing multiple dictionaries. The `points` in the dictionary represent the coordinates (x, y) of the four points of the text box, arranged clockwise from the point at the upper left corner. +The image annotation after **json.dumps()** encoding is a list containing multiple dictionaries. -`transcription` represents the text of the current text box, and this information is not needed in the text detection task. -If you want to train PaddleOCR on other datasets, you can build the annotation file according to the above format. +The `points` in the dictionary represent the coordinates (x, y) of the four points of the text box, arranged clockwise from the point at the upper left corner. + +`transcription` represents the text of the current text box. **When its content is "###" it means that the text box is invalid and will be skipped during training.** + +If you want to train PaddleOCR on other datasets, please build the annotation file according to the above format. ## TRAINING @@ -56,7 +59,7 @@ tar xf ./pretrain_models/MobileNetV3_large_x0_5_pretrained.tar ./pretrain_models ``` -**START TRAINING** +#### START TRAINING *If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.* ``` python3 tools/train.py -c configs/det/det_mv3_db.yml @@ -70,7 +73,7 @@ You can also use `-o` to change the training parameters without modifying the ym python3 tools/train.py -c configs/det/det_mv3_db.yml -o Optimizer.base_lr=0.0001 ``` -**load trained model and conntinue training** +#### load trained model and conntinue training If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded. For example: -- GitLab