diff --git a/doc/doc_ch/inference.md b/doc/doc_ch/inference.md
index 0b082c568dbc609975dd406df03cf035ecf80277..f0f7401538a9f8940f671fdcc170aca6c003040d 100755
--- a/doc/doc_ch/inference.md
+++ b/doc/doc_ch/inference.md
@@ -13,7 +13,6 @@ inference 模型(`paddle.jit.save`保存的模型)
- [检测模型转inference模型](#检测模型转inference模型)
- [识别模型转inference模型](#识别模型转inference模型)
- [方向分类模型转inference模型](#方向分类模型转inference模型)
- - [端到端模型转inference模型](#端到端模型转inference模型)
- [二、文本检测模型推理](#文本检测模型推理)
- [1. 超轻量中文检测模型推理](#超轻量中文检测模型推理)
@@ -119,32 +118,6 @@ python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_mo
├── inference.pdiparams.info # 分类inference模型的参数信息,可忽略
└── inference.pdmodel # 分类inference模型的program文件
```
-
-### 端到端模型转inference模型
-
-下载端到端模型:
-```
-wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
-```
-
-端到端模型转inference模型与检测的方式相同,如下:
-```
-# -c 后面设置训练算法的yml配置文件
-# -o 配置可选参数
-# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
-# Global.load_static_weights 参数需要设置为 False。
-# Global.save_inference_dir参数设置转换的模型将保存的地址。
-
-python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/e2e/
-```
-
-转换成功后,在目录下有三个文件:
-```
-/inference/e2e/
- ├── inference.pdiparams # 分类inference模型的参数文件
- ├── inference.pdiparams.info # 分类inference模型的参数信息,可忽略
- └── inference.pdmodel # 分类inference模型的program文件
-```
## 二、文本检测模型推理
diff --git a/doc/doc_ch/pgnet.md b/doc/doc_ch/pgnet.md
index 7e759afa0f8aafe285648e7989e20d7c96462101..6b5f62ddacbc32319c1cc7b9c706e79075c261a5 100644
--- a/doc/doc_ch/pgnet.md
+++ b/doc/doc_ch/pgnet.md
@@ -25,6 +25,13 @@ PGNet算法细节详见[论文](https://www.aaai.org/AAAI21Papers/AAAI-2885.Wang
![](../imgs_results/e2e_res_img293_pgnet.png)
![](../imgs_results/e2e_res_img295_pgnet.png)
+### 性能指标
+| |det_precision|det_recall|det_f_score|e2e_precision|e2e_recall|e2e_f_score|FPS (size=640)|下载|
+| --- | --- | --- | --- | --- | --- | --- | --- | --- |
+|Paper|85.30|86.80|86.1|-|-|61.7|38.20|-|
+|Ours|87.03|82.48|84.69|61.71|58.43|60.03|62.61|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar)|
+
+*note:PaddleOCR里的PGNet实现针对预测速度做了优化,在精度下降可接受范围内,可以显著提升端对端预测速度*
## 二、环境配置
@@ -170,10 +177,3 @@ python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/im
可视化文本端到端结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下:
![](../imgs_results/e2e_res_img623_pgnet.jpg)
-
-#### (3). 性能指标
-| |det_precision|det_recall|det_f_score|e2e_precision|e2e_recall|e2e_f_score|FPS (size=640)|
-| --- | --- | --- | --- | --- | --- | --- | --- |
-|Ours|87.03|82.48|84.69|61.71|58.43|60.03|62.61|
-|Paper|85.30|86.80|86.1|-|-|61.7|38.20|
-*note:PaddleOCR里的PGNet实现针对预测速度做了优化,在精度下降可接受范围内,可以显著提升端对端预测速度*
diff --git a/doc/doc_en/pgnet_en.md b/doc/doc_en/pgnet_en.md
index 8855206a68575cb8a39a1a101ebb9cc97970100b..868764afc74a14637e1214ef91298b054d416c96 100644
--- a/doc/doc_en/pgnet_en.md
+++ b/doc/doc_en/pgnet_en.md
@@ -23,6 +23,13 @@ The output of TBO and TCL can get text detection results after post-processing,
The results of detection and recognition are as follows:
![](../imgs_results/e2e_res_img293_pgnet.png)
![](../imgs_results/e2e_res_img295_pgnet.png)
+### Performance
+| |det_precision|det_recall|det_f_score|e2e_precision|e2e_recall|e2e_f_score|FPS (size=640)|download|
+| --- | --- | --- | --- | --- | --- | --- | --- | --- |
+|Paper|85.30|86.80|86.1|-|-|61.7|38.20|-|
+|Ours|87.03|82.48|84.69|61.71|58.43|60.03|62.61|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar)|
+
+*note:PGNet in PaddleOCR optimizes the prediction speed, and can significantly improve the end-to-end prediction speed within the acceptable range of accuracy reduction*
## 2. Environment Configuration
@@ -173,9 +180,3 @@ python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/im
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'e2e_res'. Examples of results are as follows:
![](../imgs_results/e2e_res_img623_pgnet.jpg)
-#### (3). Performance
-| |det_precision|det_recall|det_f_score|e2e_precision|e2e_recall|e2e_f_score|FPS (size=640)|
-| --- | --- | --- | --- | --- | --- | --- | --- |
-|Ours|87.03|82.48|84.69|61.71|58.43|60.03|62.61|
-|Paper|85.30|86.80|86.1|-|-|61.7|38.20|
-*note:PGNet in PaddleOCR optimizes the prediction speed, and can significantly improve the end-to-end prediction speed within the acceptable range of accuracy reduction*