提交 b7818380 编写于 作者: xuyang2233's avatar xuyang2233

fix conflicts

......@@ -10,9 +10,14 @@ __pycache__/
inference/
inference_results/
output/
<<<<<<< HEAD
train_data
log
=======
train_data/
log/
>>>>>>> 1696b36bdb4152138ed5cb08a357df8fe03dc067
*.DS_Store
*.vs
*.user
......
......@@ -28,7 +28,7 @@ from PyQt5.QtCore import QSize, Qt, QPoint, QByteArray, QTimer, QFileInfo, QPoin
from PyQt5.QtGui import QImage, QCursor, QPixmap, QImageReader
from PyQt5.QtWidgets import QMainWindow, QListWidget, QVBoxLayout, QToolButton, QHBoxLayout, QDockWidget, QWidget, \
QSlider, QGraphicsOpacityEffect, QMessageBox, QListView, QScrollArea, QWidgetAction, QApplication, QLabel, QGridLayout, \
QFileDialog, QListWidgetItem, QComboBox, QDialog
QFileDialog, QListWidgetItem, QComboBox, QDialog, QAbstractItemView
__dir__ = os.path.dirname(os.path.abspath(__file__))
......@@ -242,6 +242,20 @@ class MainWindow(QMainWindow):
self.labelListDock.setFeatures(QDockWidget.NoDockWidgetFeatures)
listLayout.addWidget(self.labelListDock)
# enable labelList drag_drop to adjust bbox order
# 设置选择模式为单选
self.labelList.setSelectionMode(QAbstractItemView.SingleSelection)
# 启用拖拽
self.labelList.setDragEnabled(True)
# 设置接受拖放
self.labelList.viewport().setAcceptDrops(True)
# 设置显示将要被放置的位置
self.labelList.setDropIndicatorShown(True)
# 设置拖放模式为移动项目,如果不设置,默认为复制项目
self.labelList.setDragDropMode(QAbstractItemView.InternalMove)
# 触发放置
self.labelList.model().rowsMoved.connect(self.drag_drop_happened)
# ================== Detection Box ==================
self.BoxList = QListWidget()
......@@ -589,15 +603,23 @@ class MainWindow(QMainWindow):
self.displayLabelOption.setChecked(settings.get(SETTING_PAINT_LABEL, False))
self.displayLabelOption.triggered.connect(self.togglePaintLabelsOption)
# Add option to enable/disable box index being displayed at the top of bounding boxes
self.displayIndexOption = QAction(getStr('displayIndex'), self)
self.displayIndexOption.setCheckable(True)
self.displayIndexOption.setChecked(settings.get(SETTING_PAINT_INDEX, False))
self.displayIndexOption.triggered.connect(self.togglePaintIndexOption)
self.labelDialogOption = QAction(getStr('labelDialogOption'), self)
self.labelDialogOption.setShortcut("Ctrl+Shift+L")
self.labelDialogOption.setCheckable(True)
self.labelDialogOption.setChecked(settings.get(SETTING_PAINT_LABEL, False))
self.displayIndexOption.setChecked(settings.get(SETTING_PAINT_INDEX, False))
self.labelDialogOption.triggered.connect(self.speedChoose)
self.autoSaveOption = QAction(getStr('autoSaveMode'), self)
self.autoSaveOption.setCheckable(True)
self.autoSaveOption.setChecked(settings.get(SETTING_PAINT_LABEL, False))
self.displayIndexOption.setChecked(settings.get(SETTING_PAINT_INDEX, False))
self.autoSaveOption.triggered.connect(self.autoSaveFunc)
addActions(self.menus.file,
......@@ -606,7 +628,7 @@ class MainWindow(QMainWindow):
addActions(self.menus.help, (showKeys, showSteps, showInfo))
addActions(self.menus.view, (
self.displayLabelOption, self.labelDialogOption,
self.displayLabelOption, self.displayIndexOption, self.labelDialogOption,
None,
hideAll, showAll, None,
zoomIn, zoomOut, zoomOrg, None,
......@@ -964,6 +986,7 @@ class MainWindow(QMainWindow):
else:
self.canvas.selectedShapes_hShape = self.canvas.selectedShapes
for shape in self.canvas.selectedShapes_hShape:
if shape in self.shapesToItemsbox.keys():
item = self.shapesToItemsbox[shape] # listitem
text = [(int(p.x()), int(p.y())) for p in shape.points]
item.setText(str(text))
......@@ -1040,6 +1063,8 @@ class MainWindow(QMainWindow):
def addLabel(self, shape):
shape.paintLabel = self.displayLabelOption.isChecked()
shape.paintIdx = self.displayIndexOption.isChecked()
item = HashableQListWidgetItem(shape.label)
item.setFlags(item.flags() | Qt.ItemIsUserCheckable)
item.setCheckState(Qt.Unchecked) if shape.difficult else item.setCheckState(Qt.Checked)
......@@ -1083,6 +1108,7 @@ class MainWindow(QMainWindow):
def loadLabels(self, shapes):
s = []
shape_index = 0
for label, points, line_color, key_cls, difficult in shapes:
shape = Shape(label=label, line_color=line_color, key_cls=key_cls)
for x, y in points:
......@@ -1094,6 +1120,8 @@ class MainWindow(QMainWindow):
shape.addPoint(QPointF(x, y))
shape.difficult = difficult
shape.idx = shape_index
shape_index += 1
# shape.locked = False
shape.close()
s.append(shape)
......@@ -1209,6 +1237,9 @@ class MainWindow(QMainWindow):
self.canvas.deSelectShape()
def labelItemChanged(self, item):
# avoid accidentally triggering the itemChanged siganl with unhashable item
# Unknown trigger condition
if type(item) == HashableQListWidgetItem:
shape = self.itemsToShapes[item]
label = item.text()
if label != shape.label:
......@@ -1221,6 +1252,39 @@ class MainWindow(QMainWindow):
else: # User probably changed item visibility
self.canvas.setShapeVisible(shape, True) # item.checkState() == Qt.Checked
# self.actions.save.setEnabled(True)
else:
print('enter labelItemChanged slot with unhashable item: ', item, item.text())
def drag_drop_happened(self):
'''
label list drag drop signal slot
'''
# print('___________________drag_drop_happened_______________')
# should only select single item
for item in self.labelList.selectedItems():
newIndex = self.labelList.indexFromItem(item).row()
# only support drag_drop one item
assert len(self.canvas.selectedShapes) > 0
for shape in self.canvas.selectedShapes:
selectedShapeIndex = shape.idx
if newIndex == selectedShapeIndex:
return
# move corresponding item in shape list
shape = self.canvas.shapes.pop(selectedShapeIndex)
self.canvas.shapes.insert(newIndex, shape)
# update bbox index
self.canvas.updateShapeIndex()
# boxList update simultaneously
item = self.BoxList.takeItem(selectedShapeIndex)
self.BoxList.insertItem(newIndex, item)
# changes happen
self.setDirty()
# Callback functions:
def newShape(self, value=True):
......@@ -1560,6 +1624,7 @@ class MainWindow(QMainWindow):
settings[SETTING_LAST_OPEN_DIR] = ''
settings[SETTING_PAINT_LABEL] = self.displayLabelOption.isChecked()
settings[SETTING_PAINT_INDEX] = self.displayIndexOption.isChecked()
settings[SETTING_DRAW_SQUARE] = self.drawSquaresOption.isChecked()
settings.save()
try:
......@@ -1946,8 +2011,16 @@ class MainWindow(QMainWindow):
self.labelHist.append(line)
def togglePaintLabelsOption(self):
self.displayIndexOption.setChecked(False)
for shape in self.canvas.shapes:
shape.paintLabel = self.displayLabelOption.isChecked()
shape.paintIdx = self.displayIndexOption.isChecked()
def togglePaintIndexOption(self):
self.displayLabelOption.setChecked(False)
for shape in self.canvas.shapes:
shape.paintLabel = self.displayLabelOption.isChecked()
shape.paintIdx = self.displayIndexOption.isChecked()
def toogleDrawSquare(self):
self.canvas.setDrawingShapeToSquare(self.drawSquaresOption.isChecked())
......@@ -2042,7 +2115,7 @@ class MainWindow(QMainWindow):
self.init_key_list(self.Cachelabel)
def reRecognition(self):
img = cv2.imread(self.filePath)
img = cv2.imdecode(np.fromfile(self.filePath,dtype=np.uint8),1)
# org_box = [dic['points'] for dic in self.PPlabel[self.getImglabelidx(self.filePath)]]
if self.canvas.shapes:
self.result_dic = []
......@@ -2111,7 +2184,7 @@ class MainWindow(QMainWindow):
QMessageBox.information(self, "Information", "Draw a box!")
def singleRerecognition(self):
img = cv2.imread(self.filePath)
img = cv2.imdecode(np.fromfile(self.filePath,dtype=np.uint8),1)
for shape in self.canvas.selectedShapes:
box = [[int(p.x()), int(p.y())] for p in shape.points]
if len(box) > 4:
......@@ -2187,6 +2260,7 @@ class MainWindow(QMainWindow):
shapes = []
result_len = len(region['res']['boxes'])
order_index = 0
for i in range(result_len):
bbox = np.array(region['res']['boxes'][i])
rec_text = region['res']['rec_res'][i][0]
......@@ -2205,6 +2279,8 @@ class MainWindow(QMainWindow):
x, y, snapped = self.canvas.snapPointToCanvas(x, y)
shape.addPoint(QPointF(x, y))
shape.difficult = False
shape.idx = order_index
order_index += 1
# shape.locked = False
shape.close()
self.addLabel(shape)
......
......@@ -314,6 +314,7 @@ class Canvas(QWidget):
QApplication.restoreOverrideCursor() # ?
if self.movingShape and self.hShape:
if self.hShape in self.shapes:
index = self.shapes.index(self.hShape)
if (
self.shapesBackups[-1][index].points
......@@ -329,6 +330,7 @@ class Canvas(QWidget):
assert len(self.selectedShapesCopy) == len(self.selectedShapes)
if copy:
for i, shape in enumerate(self.selectedShapesCopy):
shape.idx = len(self.shapes) # add current box index
self.shapes.append(shape)
self.selectedShapes[i].selected = False
self.selectedShapes[i] = shape
......@@ -524,6 +526,9 @@ class Canvas(QWidget):
self.storeShapes()
self.selectedShapes = []
self.update()
self.updateShapeIndex()
return deleted_shapes
def storeShapes(self):
......@@ -619,6 +624,13 @@ class Canvas(QWidget):
pal.setColor(self.backgroundRole(), QColor(232, 232, 232, 255))
self.setPalette(pal)
# adaptive BBOX label & index font size
if self.pixmap:
h, w = self.pixmap.size().height(), self.pixmap.size().width()
fontszie = int(max(h, w) / 48)
for s in self.shapes:
s.fontsize = fontszie
p.end()
def fillDrawing(self):
......@@ -651,6 +663,7 @@ class Canvas(QWidget):
return
self.current.close()
self.current.idx = len(self.shapes) # add current box index
self.shapes.append(self.current)
self.current = None
self.setHiding(False)
......@@ -842,6 +855,7 @@ class Canvas(QWidget):
self.hVertex = None
# self.hEdge = None
self.storeShapes()
self.updateShapeIndex()
self.repaint()
def setShapeVisible(self, shape, value):
......@@ -883,6 +897,7 @@ class Canvas(QWidget):
self.selectedShapes = []
for shape in self.shapes:
shape.selected = False
self.updateShapeIndex()
self.repaint()
@property
......@@ -890,3 +905,8 @@ class Canvas(QWidget):
if len(self.shapesBackups) < 2:
return False
return True
def updateShapeIndex(self):
for i in range(len(self.shapes)):
self.shapes[i].idx = i
self.update()
\ No newline at end of file
......@@ -21,6 +21,7 @@ SETTING_ADVANCE_MODE = 'advanced'
SETTING_WIN_STATE = 'window/state'
SETTING_SAVE_DIR = 'savedir'
SETTING_PAINT_LABEL = 'paintlabel'
SETTING_PAINT_INDEX = 'paintindex'
SETTING_LAST_OPEN_DIR = 'lastOpenDir'
SETTING_AUTO_SAVE = 'autosave'
SETTING_SINGLE_CLASS = 'singleclass'
......
......@@ -46,15 +46,16 @@ class Shape(object):
point_size = 8
scale = 1.0
def __init__(self, label=None, line_color=None, difficult=False, key_cls="None", paintLabel=False):
def __init__(self, label=None, line_color=None, difficult=False, key_cls="None", paintLabel=False, paintIdx=False):
self.label = label
self.idx = 0
self.idx = None # bbox order, only for table annotation
self.points = []
self.fill = False
self.selected = False
self.difficult = difficult
self.key_cls = key_cls
self.paintLabel = paintLabel
self.paintIdx = paintIdx
self.locked = False
self.direction = 0
self.center = None
......@@ -65,6 +66,7 @@ class Shape(object):
self.NEAR_VERTEX: (4, self.P_ROUND),
self.MOVE_VERTEX: (1.5, self.P_SQUARE),
}
self.fontsize = 8
self._closed = False
......@@ -155,7 +157,7 @@ class Shape(object):
min_y = min(min_y, point.y())
if min_x != sys.maxsize and min_y != sys.maxsize:
font = QFont()
font.setPointSize(8)
font.setPointSize(self.fontsize)
font.setBold(True)
painter.setFont(font)
if self.label is None:
......@@ -164,6 +166,25 @@ class Shape(object):
min_y += MIN_Y_LABEL
painter.drawText(min_x, min_y, self.label)
# Draw number at the top-right
if self.paintIdx:
min_x = sys.maxsize
min_y = sys.maxsize
for point in self.points:
min_x = min(min_x, point.x())
min_y = min(min_y, point.y())
if min_x != sys.maxsize and min_y != sys.maxsize:
font = QFont()
font.setPointSize(self.fontsize)
font.setBold(True)
painter.setFont(font)
text = ''
if self.idx != None:
text = str(self.idx)
if min_y < MIN_Y_LABEL:
min_y += MIN_Y_LABEL
painter.drawText(min_x, min_y, text)
if self.fill:
color = self.select_fill_color if self.selected else self.fill_color
painter.fillPath(line_path, color)
......
......@@ -61,6 +61,7 @@ labels=Labels
autoSaveMode=Auto Save mode
singleClsMode=Single Class Mode
displayLabel=Display Labels
displayIndex=Display box index
fileList=File List
files=Files
advancedMode=Advanced Mode
......
......@@ -61,6 +61,7 @@ labels=标签
autoSaveMode=自动保存模式
singleClsMode=单一类别模式
displayLabel=显示类别
displayIndex=显示box序号
fileList=文件列表
files=文件
advancedMode=专家模式
......
......@@ -82,7 +82,7 @@ Train:
Eval:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/
data_dir: ./train_data/data_lmdb_release/evaluaiton/
transforms:
- DecodeImage: # load image
img_mode: BGR
......
Global:
use_gpu: True
epoch_num: 6
log_smooth_window: 50
print_batch_step: 50
save_model_dir: ./output/rec/rec_r32_gaspin_bilstm_att/
save_epoch_step: 3
# evaluation is run every 2000 iterations after the 4000th iteration
eval_batch_step: [0, 2000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path: ./ppocr/utils/dict/spin_dict.txt
max_text_length: 25
infer_mode: False
use_space_char: False
save_res_path: ./output/rec/predicts_r32_gaspin_bilstm_att.txt
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
lr:
name: Piecewise
decay_epochs: [3, 4, 5]
values: [0.001, 0.0003, 0.00009, 0.000027]
clip_norm: 5
Architecture:
model_type: rec
algorithm: SPIN
in_channels: 1
Transform:
name: GA_SPIN
offsets: True
default_type: 6
loc_lr: 0.1
stn: True
Backbone:
name: ResNet32
out_channels: 512
Neck:
name: SequenceEncoder
encoder_type: cascadernn
hidden_size: 256
out_channels: [256, 512]
with_linear: True
Head:
name: SPINAttentionHead
hidden_size: 256
Loss:
name: SPINAttentionLoss
ignore_index: 0
PostProcess:
name: SPINLabelDecode
use_space_char: False
Metric:
name: RecMetric
main_indicator: acc
is_filter: True
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ic15_data/
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SPINLabelEncode: # Class handling label
- SPINRecResizeImg:
image_shape: [100, 32]
interpolation : 2
mean: [127.5]
std: [127.5]
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 8
drop_last: True
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ic15_data
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SPINLabelEncode: # Class handling label
- SPINRecResizeImg:
image_shape: [100, 32]
interpolation : 2
mean: [127.5]
std: [127.5]
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 2
......@@ -8,7 +8,7 @@ Global:
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
cal_metric_during_train: True
pretrained_model:
pretrained_model: ./pretrain_models/abinet_vl_pretrained
checkpoints:
save_inference_dir:
use_visualdl: False
......@@ -82,7 +82,7 @@ Train:
Eval:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/
data_dir: ./train_data/data_lmdb_release/evaluation/
transforms:
- DecodeImage: # load image
img_mode: RGB
......
......@@ -77,7 +77,7 @@ Metric:
Train:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- DecodeImage: # load image
img_mode: BGR
......@@ -97,7 +97,7 @@ Train:
Eval:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation
data_dir: ./train_data/data_lmdb_release/evaluation/
transforms:
- DecodeImage: # load image
img_mode: BGR
......
......@@ -81,7 +81,7 @@ Train:
Eval:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/
data_dir: ./train_data/data_lmdb_release/evaluation/
transforms:
- DecodeImage: # load image
img_mode: BGR
......
......@@ -32,7 +32,7 @@
| --- | --- | --- | --- | --- | --- | --- |
|DB|ResNet50_vd|[configs/det/det_r50_vd_db.yml](../../configs/det/det_r50_vd_db.yml)|86.41%|78.72%|82.38%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|[configs/det/det_mv3_db.yml](../../configs/det/det_mv3_db.yml)|77.29%|73.08%|75.12%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|DB++|ResNet50|[configs/det/det_r50_db++_ic15.yml](../../configs/det/det_r50_db++_ic15.yml)|90.89%|82.66%|86.58%|[合成数据预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_icdar15_train.tar)|
|DB++|ResNet50|[configs/det/det_r50_db++_icdar15.yml](../../configs/det/det_r50_db++_icdar15.yml)|90.89%|82.66%|86.58%|[合成数据预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_icdar15_train.tar)|
在TD_TR文本检测公开数据集上,算法复现效果如下:
......
......@@ -69,6 +69,7 @@
- [x] [SVTR](./algorithm_rec_svtr.md)
- [x] [ViTSTR](./algorithm_rec_vitstr.md)
- [x] [ABINet](./algorithm_rec_abinet.md)
- [x] [SPIN](./algorithm_rec_spin.md)
- [x] [RobustScanner](./algorithm_rec_robustscanner.md)
参考[DTRB](https://arxiv.org/abs/1904.01906)[3]文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
......@@ -90,7 +91,12 @@
|SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) |
|ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ce | [训练模型](https://paddleocr.bj.bcebos.com/rec_vitstr_none_ce_train.tar) |
|ABINet|Resnet45| 90.75% | rec_r45_abinet | [训练模型](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar) |
<<<<<<< HEAD
|RobustScanner|ResNet31V2| 87.77% | rec_r31_robustscanner | coming soon |
=======
|SPIN|ResNet32| 90.00% | rec_r32_gaspin_bilstm_att | coming soon |
>>>>>>> 1696b36bdb4152138ed5cb08a357df8fe03dc067
<a name="2"></a>
......
# SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition
- [1. 算法简介](#1)
- [2. 环境配置](#2)
- [3. 模型训练、评估、预测](#3)
- [3.1 训练](#3-1)
- [3.2 评估](#3-2)
- [3.3 预测](#3-3)
- [4. 推理部署](#4)
- [4.1 Python推理](#4-1)
- [4.2 C++推理](#4-2)
- [4.3 Serving服务化部署](#4-3)
- [4.4 更多推理部署](#4-4)
- [5. FAQ](#5)
<a name="1"></a>
## 1. 算法简介
论文信息:
> [SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition](https://arxiv.org/abs/2005.13117)
> Chengwei Zhang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Yi Niu, Fei Wu, Futai Zou
> AAAI, 2020
SPIN收录于AAAI2020。主要用于OCR识别任务。在任意形状文本识别中,矫正网络是一种较为常见的前置处理模块,但诸如RARE\ASTER\ESIR等只考虑了空间变换,并没有考虑色度变换。本文提出了一种结构Structure-Preserving Inner Offset Network (SPIN),可以在色彩空间上进行变换。该模块是可微分的,可以加入到任意识别器中。
使用MJSynth和SynthText两个合成文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下:
|模型|骨干网络|配置文件|Acc|下载链接|
| --- | --- | --- | --- | --- |
|SPIN|ResNet32|[rec_r32_gaspin_bilstm_att.yml](../../configs/rec/rec_r32_gaspin_bilstm_att.yml)|90.0%|coming soon|
<a name="2"></a>
## 2. 环境配置
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
<a name="3"></a>
## 3. 模型训练、评估、预测
请参考[文本识别教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
训练
具体地,在完成数据准备后,便可以启动训练,训练命令如下:
```
#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml
#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml
```
评估
```
# GPU 评估, Global.pretrained_model 为待测权重
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
预测:
```
# 预测使用的配置文件必须与训练一致
python3 tools/infer_rec.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```
<a name="4"></a>
## 4. 推理部署
<a name="4-1"></a>
### 4.1 Python推理
首先将SPIN文本识别训练过程中保存的模型,转换成inference model。可以使用如下命令进行转换:
```
python3 tools/export_model.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/rec_r32_gaspin_bilstm_att
```
SPIN文本识别模型推理,可以执行如下命令:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_r32_gaspin_bilstm_att/" --rec_image_shape="3, 32, 100" --rec_algorithm="SPIN" --rec_char_dict_path="/ppocr/utils/dict/spin_dict.txt" --use_space_char=Falsee
```
<a name="4-2"></a>
### 4.2 C++推理
由于C++预处理后处理还未支持SPIN,所以暂未支持
<a name="4-3"></a>
### 4.3 Serving服务化部署
暂不支持
<a name="4-4"></a>
### 4.4 更多推理部署
暂不支持
<a name="5"></a>
## 5. FAQ
## 引用
```bibtex
@article{2020SPIN,
title={SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition},
author={Chengwei Zhang and Yunlu Xu and Zhanzhan Cheng and Shiliang Pu and Yi Niu and Fei Wu and Futai Zou},
journal={AAAI2020},
year={2020},
}
```
......@@ -68,7 +68,11 @@ Supported text recognition algorithms (Click the link to get the tutorial):
- [x] [SVTR](./algorithm_rec_svtr_en.md)
- [x] [ViTSTR](./algorithm_rec_vitstr_en.md)
- [x] [ABINet](./algorithm_rec_abinet_en.md)
<<<<<<< HEAD
- [x] [RobustScanner](./algorithm_rec_robustscanner_en.md)
=======
- [x] [SPIN](./algorithm_rec_spin_en.md)
>>>>>>> 1696b36bdb4152138ed5cb08a357df8fe03dc067
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
......@@ -89,6 +93,7 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) |
|ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ce | [trained model](https://paddleocr.bj.bcebos.com/rec_vitstr_none_none_train.tar) |
|ABINet|Resnet45| 90.75% | rec_r45_abinet | [trained model](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar) |
|SPIN|ResNet32| 90.00% | rec_r32_gaspin_bilstm_att | coming soon |
|RobustScanner|ResNet31| 87.77% | rec_r31_robustscanner | coming soon |
......
# SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition
- [1. Introduction](#1)
- [2. Environment](#2)
- [3. Model Training / Evaluation / Prediction](#3)
- [3.1 Training](#3-1)
- [3.2 Evaluation](#3-2)
- [3.3 Prediction](#3-3)
- [4. Inference and Deployment](#4)
- [4.1 Python Inference](#4-1)
- [4.2 C++ Inference](#4-2)
- [4.3 Serving](#4-3)
- [4.4 More](#4-4)
- [5. FAQ](#5)
<a name="1"></a>
## 1. Introduction
Paper:
> [SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition](https://arxiv.org/abs/2005.13117)
> Chengwei Zhang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Yi Niu, Fei Wu, Futai Zou
> AAAI, 2020
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets. The algorithm reproduction effect is as follows:
|Model|Backbone|config|Acc|Download link|
| --- | --- | --- | --- | --- |
|SPIN|ResNet32|[rec_r32_gaspin_bilstm_att.yml](../../configs/rec/rec_r32_gaspin_bilstm_att.yml)|90.0%|coming soon|
<a name="2"></a>
## 2. Environment
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
<a name="3"></a>
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Training:
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
```
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml
#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml
```
Evaluation:
```
# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
Prediction:
```
# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```
<a name="4"></a>
## 4. Inference and Deployment
<a name="4-1"></a>
### 4.1 Python Inference
First, the model saved during the SPIN text recognition training process is converted into an inference model. you can use the following command to convert:
```
python3 tools/export_model.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/rec_r32_gaspin_bilstm_att
```
For SPIN text recognition model inference, the following commands can be executed:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_r32_gaspin_bilstm_att/" --rec_image_shape="3, 32, 100" --rec_algorithm="SPIN" --rec_char_dict_path="/ppocr/utils/dict/spin_dict.txt" --use_space_char=False
```
<a name="4-2"></a>
### 4.2 C++ Inference
Not supported
<a name="4-3"></a>
### 4.3 Serving
Not supported
<a name="4-4"></a>
### 4.4 More
Not supported
<a name="5"></a>
## 5. FAQ
## Citation
```bibtex
@article{2020SPIN,
title={SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition},
author={Chengwei Zhang and Yunlu Xu and Zhanzhan Cheng and Shiliang Pu and Yi Niu and Fei Wu and Futai Zou},
journal={AAAI2020},
year={2020},
}
```
......@@ -26,7 +26,7 @@ from .make_pse_gt import MakePseGt
from .rec_img_aug import BaseDataAugmentation, RecAug, RecConAug, RecResizeImg, ClsResizeImg, \
SRNRecResizeImg, GrayRecResizeImg, SARRecResizeImg, PRENResizeImg, \
ABINetRecResizeImg, SVTRRecResizeImg, ABINetRecAug, RobustScannerRecResizeImg
ABINetRecResizeImg, SVTRRecResizeImg, ABINetRecAug, SPINRecResizeImg, RobustScannerRecResizeImg
from .ssl_img_aug import SSLRotateResize
from .randaugment import RandAugment
from .copy_paste import CopyPaste
......
......@@ -1216,3 +1216,36 @@ class ABINetLabelEncode(BaseRecLabelEncode):
def add_special_char(self, dict_character):
dict_character = ['</s>'] + dict_character
return dict_character
class SPINLabelEncode(AttnLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
lower=True,
**kwargs):
super(SPINLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
self.lower = lower
def add_special_char(self, dict_character):
self.beg_str = "sos"
self.end_str = "eos"
dict_character = [self.beg_str] + [self.end_str] + dict_character
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) > self.max_text_len:
return None
data['length'] = np.array(len(text))
target = [0] + text + [1]
padded_text = [0 for _ in range(self.max_text_len + 2)]
padded_text[:len(target)] = target
data['label'] = np.array(padded_text)
return data
\ No newline at end of file
......@@ -259,6 +259,7 @@ class PRENResizeImg(object):
data['image'] = resized_img.astype(np.float32)
return data
<<<<<<< HEAD
class RobustScannerRecResizeImg(object):
def __init__(self, image_shape, max_text_length, width_downsample_ratio=0.25, **kwargs):
self.image_shape = image_shape
......@@ -275,6 +276,50 @@ class RobustScannerRecResizeImg(object):
data['pad_shape'] = pad_shape
data['valid_ratio'] = valid_ratio
data['word_positons'] = word_positons
=======
class SPINRecResizeImg(object):
def __init__(self,
image_shape,
interpolation=2,
mean=(127.5, 127.5, 127.5),
std=(127.5, 127.5, 127.5),
**kwargs):
self.image_shape = image_shape
self.mean = np.array(mean, dtype=np.float32)
self.std = np.array(std, dtype=np.float32)
self.interpolation = interpolation
def __call__(self, data):
img = data['image']
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# different interpolation type corresponding the OpenCV
if self.interpolation == 0:
interpolation = cv2.INTER_NEAREST
elif self.interpolation == 1:
interpolation = cv2.INTER_LINEAR
elif self.interpolation == 2:
interpolation = cv2.INTER_CUBIC
elif self.interpolation == 3:
interpolation = cv2.INTER_AREA
else:
raise Exception("Unsupported interpolation type !!!")
# Deal with the image error during image loading
if img is None:
return None
img = cv2.resize(img, tuple(self.image_shape), interpolation)
img = np.array(img, np.float32)
img = np.expand_dims(img, -1)
img = img.transpose((2, 0, 1))
# normalize the image
img = img.copy().astype(np.float32)
mean = np.float64(self.mean.reshape(1, -1))
stdinv = 1 / np.float64(self.std.reshape(1, -1))
img -= mean
img *= stdinv
data['image'] = img
>>>>>>> 1696b36bdb4152138ed5cb08a357df8fe03dc067
return data
class GrayRecResizeImg(object):
......
......@@ -35,6 +35,7 @@ from .rec_sar_loss import SARLoss
from .rec_aster_loss import AsterLoss
from .rec_pren_loss import PRENLoss
from .rec_multi_loss import MultiLoss
from .rec_spin_att_loss import SPINAttentionLoss
# cls loss
from .cls_loss import ClsLoss
......@@ -62,7 +63,7 @@ def build_loss(config):
'ClsLoss', 'AttentionLoss', 'SRNLoss', 'PGLoss', 'CombinedLoss',
'CELoss', 'TableAttentionLoss', 'SARLoss', 'AsterLoss', 'SDMGRLoss',
'VQASerTokenLayoutLMLoss', 'LossFromOutput', 'PRENLoss', 'MultiLoss',
'TableMasterLoss'
'TableMasterLoss', 'SPINAttentionLoss'
]
config = copy.deepcopy(config)
module_name = config.pop('name')
......
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
'''This code is refer from:
https://github.com/hikopensource/DAVAR-Lab-OCR
'''
class SPINAttentionLoss(nn.Layer):
def __init__(self, reduction='mean', ignore_index=-100, **kwargs):
super(SPINAttentionLoss, self).__init__()
self.loss_func = nn.CrossEntropyLoss(weight=None, reduction=reduction, ignore_index=ignore_index)
def forward(self, predicts, batch):
targets = batch[1].astype("int64")
targets = targets[:, 1:] # remove [eos] in label
label_lengths = batch[2].astype('int64')
batch_size, num_steps, num_classes = predicts.shape[0], predicts.shape[
1], predicts.shape[2]
assert len(targets.shape) == len(list(predicts.shape)) - 1, \
"The target's shape and inputs's shape is [N, d] and [N, num_steps]"
inputs = paddle.reshape(predicts, [-1, predicts.shape[-1]])
targets = paddle.reshape(targets, [-1])
return {'loss': self.loss_func(inputs, targets)}
......@@ -32,6 +32,7 @@ def build_backbone(config, model_type):
from .rec_mv1_enhance import MobileNetV1Enhance
from .rec_nrtr_mtb import MTB
from .rec_resnet_31 import ResNet31
from .rec_resnet_32 import ResNet32
from .rec_resnet_45 import ResNet45
from .rec_resnet_aster import ResNet_ASTER
from .rec_micronet import MicroNet
......@@ -41,7 +42,7 @@ def build_backbone(config, model_type):
support_dict = [
'MobileNetV1Enhance', 'MobileNetV3', 'ResNet', 'ResNetFPN', 'MTB',
'ResNet31', 'ResNet45', 'ResNet_ASTER', 'MicroNet',
'EfficientNetb3_PREN', 'SVTRNet', 'ViTSTR'
'EfficientNetb3_PREN', 'SVTRNet', 'ViTSTR', 'ResNet32'
]
elif model_type == 'e2e':
from .e2e_resnet_vd_pg import ResNet
......
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/hikopensource/DAVAR-Lab-OCR/davarocr/davar_rcg/models/backbones/ResNet32.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.nn as nn
__all__ = ["ResNet32"]
conv_weight_attr = nn.initializer.KaimingNormal()
class ResNet32(nn.Layer):
"""
Feature Extractor is proposed in FAN Ref [1]
Ref [1]: Focusing Attention: Towards Accurate Text Recognition in Neural Images ICCV-2017
"""
def __init__(self, in_channels, out_channels=512):
"""
Args:
in_channels (int): input channel
output_channel (int): output channel
"""
super(ResNet32, self).__init__()
self.out_channels = out_channels
self.ConvNet = ResNet(in_channels, out_channels, BasicBlock, [1, 2, 5, 3])
def forward(self, inputs):
"""
Args:
inputs: input feature
Returns:
output feature
"""
return self.ConvNet(inputs)
class BasicBlock(nn.Layer):
"""Res-net Basic Block"""
expansion = 1
def __init__(self, inplanes, planes,
stride=1, downsample=None,
norm_type='BN', **kwargs):
"""
Args:
inplanes (int): input channel
planes (int): channels of the middle feature
stride (int): stride of the convolution
downsample (int): type of the down_sample
norm_type (str): type of the normalization
**kwargs (None): backup parameter
"""
super(BasicBlock, self).__init__()
self.conv1 = self._conv3x3(inplanes, planes)
self.bn1 = nn.BatchNorm2D(planes)
self.conv2 = self._conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2D(planes)
self.relu = nn.ReLU()
self.downsample = downsample
self.stride = stride
def _conv3x3(self, in_planes, out_planes, stride=1):
"""
Args:
in_planes (int): input channel
out_planes (int): channels of the middle feature
stride (int): stride of the convolution
Returns:
nn.Layer: Conv2D with kernel = 3
"""
return nn.Conv2D(in_planes, out_planes,
kernel_size=3, stride=stride,
padding=1, weight_attr=conv_weight_attr,
bias_attr=False)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Layer):
"""Res-Net network structure"""
def __init__(self, input_channel,
output_channel, block, layers):
"""
Args:
input_channel (int): input channel
output_channel (int): output channel
block (BasicBlock): convolution block
layers (list): layers of the block
"""
super(ResNet, self).__init__()
self.output_channel_block = [int(output_channel / 4),
int(output_channel / 2),
output_channel,
output_channel]
self.inplanes = int(output_channel / 8)
self.conv0_1 = nn.Conv2D(input_channel, int(output_channel / 16),
kernel_size=3, stride=1,
padding=1,
weight_attr=conv_weight_attr,
bias_attr=False)
self.bn0_1 = nn.BatchNorm2D(int(output_channel / 16))
self.conv0_2 = nn.Conv2D(int(output_channel / 16), self.inplanes,
kernel_size=3, stride=1,
padding=1,
weight_attr=conv_weight_attr,
bias_attr=False)
self.bn0_2 = nn.BatchNorm2D(self.inplanes)
self.relu = nn.ReLU()
self.maxpool1 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
self.layer1 = self._make_layer(block,
self.output_channel_block[0],
layers[0])
self.conv1 = nn.Conv2D(self.output_channel_block[0],
self.output_channel_block[0],
kernel_size=3, stride=1,
padding=1,
weight_attr=conv_weight_attr,
bias_attr=False)
self.bn1 = nn.BatchNorm2D(self.output_channel_block[0])
self.maxpool2 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
self.layer2 = self._make_layer(block,
self.output_channel_block[1],
layers[1], stride=1)
self.conv2 = nn.Conv2D(self.output_channel_block[1],
self.output_channel_block[1],
kernel_size=3, stride=1,
padding=1,
weight_attr=conv_weight_attr,
bias_attr=False,)
self.bn2 = nn.BatchNorm2D(self.output_channel_block[1])
self.maxpool3 = nn.MaxPool2D(kernel_size=2,
stride=(2, 1),
padding=(0, 1))
self.layer3 = self._make_layer(block, self.output_channel_block[2],
layers[2], stride=1)
self.conv3 = nn.Conv2D(self.output_channel_block[2],
self.output_channel_block[2],
kernel_size=3, stride=1,
padding=1,
weight_attr=conv_weight_attr,
bias_attr=False)
self.bn3 = nn.BatchNorm2D(self.output_channel_block[2])
self.layer4 = self._make_layer(block, self.output_channel_block[3],
layers[3], stride=1)
self.conv4_1 = nn.Conv2D(self.output_channel_block[3],
self.output_channel_block[3],
kernel_size=2, stride=(2, 1),
padding=(0, 1),
weight_attr=conv_weight_attr,
bias_attr=False)
self.bn4_1 = nn.BatchNorm2D(self.output_channel_block[3])
self.conv4_2 = nn.Conv2D(self.output_channel_block[3],
self.output_channel_block[3],
kernel_size=2, stride=1,
padding=0,
weight_attr=conv_weight_attr,
bias_attr=False)
self.bn4_2 = nn.BatchNorm2D(self.output_channel_block[3])
def _make_layer(self, block, planes, blocks, stride=1):
"""
Args:
block (block): convolution block
planes (int): input channels
blocks (list): layers of the block
stride (int): stride of the convolution
Returns:
nn.Sequential: the combination of the convolution block
"""
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2D(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride,
weight_attr=conv_weight_attr,
bias_attr=False),
nn.BatchNorm2D(planes * block.expansion),
)
layers = list()
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv0_1(x)
x = self.bn0_1(x)
x = self.relu(x)
x = self.conv0_2(x)
x = self.bn0_2(x)
x = self.relu(x)
x = self.maxpool1(x)
x = self.layer1(x)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool2(x)
x = self.layer2(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.maxpool3(x)
x = self.layer3(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.layer4(x)
x = self.conv4_1(x)
x = self.bn4_1(x)
x = self.relu(x)
x = self.conv4_2(x)
x = self.bn4_2(x)
x = self.relu(x)
return x
......@@ -33,6 +33,7 @@ def build_head(config):
from .rec_aster_head import AsterHead
from .rec_pren_head import PRENHead
from .rec_multi_head import MultiHead
from .rec_spin_att_head import SPINAttentionHead
from .rec_abinet_head import ABINetHead
from .rec_robustscanner_head import RobustScannerHead
......@@ -49,7 +50,7 @@ def build_head(config):
'DBHead', 'PSEHead', 'FCEHead', 'EASTHead', 'SASTHead', 'CTCHead',
'ClsHead', 'AttentionHead', 'SRNHead', 'PGHead', 'Transformer',
'TableAttentionHead', 'SARHead', 'AsterHead', 'SDMGRHead', 'PRENHead',
'MultiHead', 'ABINetHead', 'TableMasterHead', 'RobustScannerHead'
'MultiHead', 'ABINetHead', 'TableMasterHead', 'SPINAttentionHead', 'RobustScannerHead'
]
#table head
......
......@@ -273,7 +273,8 @@ def _get_length(logit):
out = out.cast('int32')
out = out.argmax(-1)
out = out + 1
out = paddle.where(abn, out, paddle.to_tensor(logit.shape[1]))
len_seq = paddle.zeros_like(out) + logit.shape[1]
out = paddle.where(abn, out, len_seq)
return out
......
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/hikopensource/DAVAR-Lab-OCR/davarocr/davar_rcg/models/sequence_heads/att_head.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class SPINAttentionHead(nn.Layer):
def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
super(SPINAttentionHead, self).__init__()
self.input_size = in_channels
self.hidden_size = hidden_size
self.num_classes = out_channels
self.attention_cell = AttentionLSTMCell(
in_channels, hidden_size, out_channels, use_gru=False)
self.generator = nn.Linear(hidden_size, out_channels)
def _char_to_onehot(self, input_char, onehot_dim):
input_ont_hot = F.one_hot(input_char, onehot_dim)
return input_ont_hot
def forward(self, inputs, targets=None, batch_max_length=25):
batch_size = paddle.shape(inputs)[0]
num_steps = batch_max_length + 1 # +1 for [sos] at end of sentence
hidden = (paddle.zeros((batch_size, self.hidden_size)),
paddle.zeros((batch_size, self.hidden_size)))
output_hiddens = []
if self.training: # for train
targets = targets[0]
for i in range(num_steps):
char_onehots = self._char_to_onehot(
targets[:, i], onehot_dim=self.num_classes)
(outputs, hidden), alpha = self.attention_cell(hidden, inputs,
char_onehots)
output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
output = paddle.concat(output_hiddens, axis=1)
probs = self.generator(output)
else:
targets = paddle.zeros(shape=[batch_size], dtype="int32")
probs = None
char_onehots = None
outputs = None
alpha = None
for i in range(num_steps):
char_onehots = self._char_to_onehot(
targets, onehot_dim=self.num_classes)
(outputs, hidden), alpha = self.attention_cell(hidden, inputs,
char_onehots)
probs_step = self.generator(outputs)
if probs is None:
probs = paddle.unsqueeze(probs_step, axis=1)
else:
probs = paddle.concat(
[probs, paddle.unsqueeze(
probs_step, axis=1)], axis=1)
next_input = probs_step.argmax(axis=1)
targets = next_input
if not self.training:
probs = paddle.nn.functional.softmax(probs, axis=2)
return probs
class AttentionLSTMCell(nn.Layer):
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
super(AttentionLSTMCell, self).__init__()
self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.score = nn.Linear(hidden_size, 1, bias_attr=False)
if not use_gru:
self.rnn = nn.LSTMCell(
input_size=input_size + num_embeddings, hidden_size=hidden_size)
else:
self.rnn = nn.GRUCell(
input_size=input_size + num_embeddings, hidden_size=hidden_size)
self.hidden_size = hidden_size
def forward(self, prev_hidden, batch_H, char_onehots):
batch_H_proj = self.i2h(batch_H)
prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden[0]), axis=1)
res = paddle.add(batch_H_proj, prev_hidden_proj)
res = paddle.tanh(res)
e = self.score(res)
alpha = F.softmax(e, axis=1)
alpha = paddle.transpose(alpha, [0, 2, 1])
context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
concat_context = paddle.concat([context, char_onehots], 1)
cur_hidden = self.rnn(concat_context, prev_hidden)
return cur_hidden, alpha
......@@ -47,6 +47,56 @@ class EncoderWithRNN(nn.Layer):
x, _ = self.lstm(x)
return x
class BidirectionalLSTM(nn.Layer):
def __init__(self, input_size,
hidden_size,
output_size=None,
num_layers=1,
dropout=0,
direction=False,
time_major=False,
with_linear=False):
super(BidirectionalLSTM, self).__init__()
self.with_linear = with_linear
self.rnn = nn.LSTM(input_size,
hidden_size,
num_layers=num_layers,
dropout=dropout,
direction=direction,
time_major=time_major)
# text recognition the specified structure LSTM with linear
if self.with_linear:
self.linear = nn.Linear(hidden_size * 2, output_size)
def forward(self, input_feature):
recurrent, _ = self.rnn(input_feature) # batch_size x T x input_size -> batch_size x T x (2*hidden_size)
if self.with_linear:
output = self.linear(recurrent) # batch_size x T x output_size
return output
return recurrent
class EncoderWithCascadeRNN(nn.Layer):
def __init__(self, in_channels, hidden_size, out_channels, num_layers=2, with_linear=False):
super(EncoderWithCascadeRNN, self).__init__()
self.out_channels = out_channels[-1]
self.encoder = nn.LayerList(
[BidirectionalLSTM(
in_channels if i == 0 else out_channels[i - 1],
hidden_size,
output_size=out_channels[i],
num_layers=1,
direction='bidirectional',
with_linear=with_linear)
for i in range(num_layers)]
)
def forward(self, x):
for i, l in enumerate(self.encoder):
x = l(x)
return x
class EncoderWithFC(nn.Layer):
def __init__(self, in_channels, hidden_size):
......@@ -166,13 +216,17 @@ class SequenceEncoder(nn.Layer):
'reshape': Im2Seq,
'fc': EncoderWithFC,
'rnn': EncoderWithRNN,
'svtr': EncoderWithSVTR
'svtr': EncoderWithSVTR,
'cascadernn': EncoderWithCascadeRNN
}
assert encoder_type in support_encoder_dict, '{} must in {}'.format(
encoder_type, support_encoder_dict.keys())
if encoder_type == "svtr":
self.encoder = support_encoder_dict[encoder_type](
self.encoder_reshape.out_channels, **kwargs)
elif encoder_type == 'cascadernn':
self.encoder = support_encoder_dict[encoder_type](
self.encoder_reshape.out_channels, hidden_size, **kwargs)
else:
self.encoder = support_encoder_dict[encoder_type](
self.encoder_reshape.out_channels, hidden_size)
......
......@@ -18,8 +18,10 @@ __all__ = ['build_transform']
def build_transform(config):
from .tps import TPS
from .stn import STN_ON
from .gaspin_transformer import GA_SPIN_Transformer as GA_SPIN
support_dict = ['TPS', 'STN_ON']
support_dict = ['TPS', 'STN_ON', 'GA_SPIN']
module_name = config.pop('name')
assert module_name in support_dict, Exception(
......
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np
import functools
from .tps import GridGenerator
'''This code is refer from:
https://github.com/hikopensource/DAVAR-Lab-OCR/davarocr/davar_rcg/models/transformations/gaspin_transformation.py
'''
class SP_TransformerNetwork(nn.Layer):
"""
Sturture-Preserving Transformation (SPT) as Equa. (2) in Ref. [1]
Ref: [1] SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition. AAAI-2021.
"""
def __init__(self, nc=1, default_type=5):
""" Based on SPIN
Args:
nc (int): number of input channels (usually in 1 or 3)
default_type (int): the complexity of transformation intensities (by default set to 6 as the paper)
"""
super(SP_TransformerNetwork, self).__init__()
self.power_list = self.cal_K(default_type)
self.sigmoid = nn.Sigmoid()
self.bn = nn.InstanceNorm2D(nc)
def cal_K(self, k=5):
"""
Args:
k (int): the complexity of transformation intensities (by default set to 6 as the paper)
Returns:
List: the normalized intensity of each pixel in [0,1], denoted as \beta [1x(2K+1)]
"""
from math import log
x = []
if k != 0:
for i in range(1, k+1):
lower = round(log(1-(0.5/(k+1))*i)/log((0.5/(k+1))*i), 2)
upper = round(1/lower, 2)
x.append(lower)
x.append(upper)
x.append(1.00)
return x
def forward(self, batch_I, weights, offsets, lambda_color=None):
"""
Args:
batch_I (Tensor): batch of input images [batch_size x nc x I_height x I_width]
weights:
offsets: the predicted offset by AIN, a scalar
lambda_color: the learnable update gate \alpha in Equa. (5) as
g(x) = (1 - \alpha) \odot x + \alpha \odot x_{offsets}
Returns:
Tensor: transformed images by SPN as Equa. (4) in Ref. [1]
[batch_size x I_channel_num x I_r_height x I_r_width]
"""
batch_I = (batch_I + 1) * 0.5
if offsets is not None:
batch_I = batch_I*(1-lambda_color) + offsets*lambda_color
batch_weight_params = paddle.unsqueeze(paddle.unsqueeze(weights, -1), -1)
batch_I_power = paddle.stack([batch_I.pow(p) for p in self.power_list], axis=1)
batch_weight_sum = paddle.sum(batch_I_power * batch_weight_params, axis=1)
batch_weight_sum = self.bn(batch_weight_sum)
batch_weight_sum = self.sigmoid(batch_weight_sum)
batch_weight_sum = batch_weight_sum * 2 - 1
return batch_weight_sum
class GA_SPIN_Transformer(nn.Layer):
"""
Geometric-Absorbed SPIN Transformation (GA-SPIN) proposed in Ref. [1]
Ref: [1] SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition. AAAI-2021.
"""
def __init__(self, in_channels=1,
I_r_size=(32, 100),
offsets=False,
norm_type='BN',
default_type=6,
loc_lr=1,
stn=True):
"""
Args:
in_channels (int): channel of input features,
set it to 1 if the grayscale images and 3 if RGB input
I_r_size (tuple): size of rectified images (used in STN transformations)
offsets (bool): set it to False if use SPN w.o. AIN,
and set it to True if use SPIN (both with SPN and AIN)
norm_type (str): the normalization type of the module,
set it to 'BN' by default, 'IN' optionally
default_type (int): the K chromatic space,
set it to 3/5/6 depend on the complexity of transformation intensities
loc_lr (float): learning rate of location network
stn (bool): whther to use stn.
"""
super(GA_SPIN_Transformer, self).__init__()
self.nc = in_channels
self.spt = True
self.offsets = offsets
self.stn = stn # set to True in GA-SPIN, while set it to False in SPIN
self.I_r_size = I_r_size
self.out_channels = in_channels
if norm_type == 'BN':
norm_layer = functools.partial(nn.BatchNorm2D, use_global_stats=True)
elif norm_type == 'IN':
norm_layer = functools.partial(nn.InstanceNorm2D, weight_attr=False,
use_global_stats=False)
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
if self.spt:
self.sp_net = SP_TransformerNetwork(in_channels,
default_type)
self.spt_convnet = nn.Sequential(
# 32*100
nn.Conv2D(in_channels, 32, 3, 1, 1, bias_attr=False),
norm_layer(32), nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2),
# 16*50
nn.Conv2D(32, 64, 3, 1, 1, bias_attr=False),
norm_layer(64), nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2),
# 8*25
nn.Conv2D(64, 128, 3, 1, 1, bias_attr=False),
norm_layer(128), nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2),
# 4*12
)
self.stucture_fc1 = nn.Sequential(
nn.Conv2D(128, 256, 3, 1, 1, bias_attr=False),
norm_layer(256), nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2),
nn.Conv2D(256, 256, 3, 1, 1, bias_attr=False),
norm_layer(256), nn.ReLU(), # 2*6
nn.MaxPool2D(kernel_size=2, stride=2),
nn.Conv2D(256, 512, 3, 1, 1, bias_attr=False),
norm_layer(512), nn.ReLU(), # 1*3
nn.AdaptiveAvgPool2D(1),
nn.Flatten(1, -1), # batch_size x 512
nn.Linear(512, 256, weight_attr=nn.initializer.Normal(0.001)),
nn.BatchNorm1D(256), nn.ReLU()
)
self.out_weight = 2*default_type+1
self.spt_length = 2*default_type+1
if offsets:
self.out_weight += 1
if self.stn:
self.F = 20
self.out_weight += self.F * 2
self.GridGenerator = GridGenerator(self.F*2, self.F)
# self.out_weight*=nc
# Init structure_fc2 in LocalizationNetwork
initial_bias = self.init_spin(default_type*2)
initial_bias = initial_bias.reshape(-1)
param_attr = ParamAttr(
learning_rate=loc_lr,
initializer=nn.initializer.Assign(np.zeros([256, self.out_weight])))
bias_attr = ParamAttr(
learning_rate=loc_lr,
initializer=nn.initializer.Assign(initial_bias))
self.stucture_fc2 = nn.Linear(256, self.out_weight,
weight_attr=param_attr,
bias_attr=bias_attr)
self.sigmoid = nn.Sigmoid()
if offsets:
self.offset_fc1 = nn.Sequential(nn.Conv2D(128, 16,
3, 1, 1,
bias_attr=False),
norm_layer(16),
nn.ReLU(),)
self.offset_fc2 = nn.Conv2D(16, in_channels,
3, 1, 1)
self.pool = nn.MaxPool2D(2, 2)
def init_spin(self, nz):
"""
Args:
nz (int): number of paired \betas exponents, which means the value of K x 2
"""
init_id = [0.00]*nz+[5.00]
if self.offsets:
init_id += [-5.00]
# init_id *=3
init = np.array(init_id)
if self.stn:
F = self.F
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
initial_bias = initial_bias.reshape(-1)
init = np.concatenate([init, initial_bias], axis=0)
return init
def forward(self, x, return_weight=False):
"""
Args:
x (Tensor): input image batch
return_weight (bool): set to False by default,
if set to True return the predicted offsets of AIN, denoted as x_{offsets}
Returns:
Tensor: rectified image [batch_size x I_channel_num x I_height x I_width], the same as the input size
"""
if self.spt:
feat = self.spt_convnet(x)
fc1 = self.stucture_fc1(feat)
sp_weight_fusion = self.stucture_fc2(fc1)
sp_weight_fusion = sp_weight_fusion.reshape([x.shape[0], self.out_weight, 1])
if self.offsets: # SPIN w. AIN
lambda_color = sp_weight_fusion[:, self.spt_length, 0]
lambda_color = self.sigmoid(lambda_color).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
sp_weight = sp_weight_fusion[:, :self.spt_length, :]
offsets = self.pool(self.offset_fc2(self.offset_fc1(feat)))
assert offsets.shape[2] == 2 # 2
assert offsets.shape[3] == 6 # 16
offsets = self.sigmoid(offsets) # v12
if return_weight:
return offsets
offsets = nn.functional.upsample(offsets, size=(x.shape[2], x.shape[3]), mode='bilinear')
if self.stn:
batch_C_prime = sp_weight_fusion[:, (self.spt_length + 1):, :].reshape([x.shape[0], self.F, 2])
build_P_prime = self.GridGenerator(batch_C_prime, self.I_r_size)
build_P_prime_reshape = build_P_prime.reshape([build_P_prime.shape[0],
self.I_r_size[0],
self.I_r_size[1],
2])
else: # SPIN w.o. AIN
sp_weight = sp_weight_fusion[:, :self.spt_length, :]
lambda_color, offsets = None, None
if self.stn:
batch_C_prime = sp_weight_fusion[:, self.spt_length:, :].reshape([x.shape[0], self.F, 2])
build_P_prime = self.GridGenerator(batch_C_prime, self.I_r_size)
build_P_prime_reshape = build_P_prime.reshape([build_P_prime.shape[0],
self.I_r_size[0],
self.I_r_size[1],
2])
x = self.sp_net(x, sp_weight, offsets, lambda_color)
if self.stn:
x = F.grid_sample(x=x, grid=build_P_prime_reshape, padding_mode='border')
return x
......@@ -27,7 +27,8 @@ from .sast_postprocess import SASTPostProcess
from .fce_postprocess import FCEPostProcess
from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode, \
DistillationCTCLabelDecode, NRTRLabelDecode, SARLabelDecode, \
SEEDLabelDecode, PRENLabelDecode, ViTSTRLabelDecode, ABINetLabelDecode
SEEDLabelDecode, PRENLabelDecode, ViTSTRLabelDecode, ABINetLabelDecode, \
SPINLabelDecode
from .cls_postprocess import ClsPostProcess
from .pg_postprocess import PGPostProcess
from .vqa_token_ser_layoutlm_postprocess import VQASerTokenLayoutLMPostProcess
......@@ -44,7 +45,7 @@ def build_post_process(config, global_config=None):
'SEEDLabelDecode', 'VQASerTokenLayoutLMPostProcess',
'VQAReTokenLayoutLMPostProcess', 'PRENLabelDecode',
'DistillationSARLabelDecode', 'ViTSTRLabelDecode', 'ABINetLabelDecode',
'TableMasterLabelDecode'
'TableMasterLabelDecode', 'SPINLabelDecode'
]
if config['name'] == 'PSEPostProcess':
......
......@@ -667,3 +667,18 @@ class ABINetLabelDecode(NRTRLabelDecode):
def add_special_char(self, dict_character):
dict_character = ['</s>'] + dict_character
return dict_character
class SPINLabelDecode(AttnLabelDecode):
""" Convert between text-label and text-index """
def __init__(self, character_dict_path=None, use_space_char=False,
**kwargs):
super(SPINLabelDecode, self).__init__(character_dict_path,
use_space_char)
def add_special_char(self, dict_character):
self.beg_str = "sos"
self.end_str = "eos"
dict_character = dict_character
dict_character = [self.beg_str] + [self.end_str] + dict_character
return dict_character
\ No newline at end of file
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
:
(
'
-
,
%
>
.
[
?
)
"
=
_
*
]
;
&
+
$
@
/
|
!
<
#
`
{
~
\
}
^
\ No newline at end of file
......@@ -34,7 +34,7 @@ from ppocr.utils.logging import get_logger
from tools.infer.predict_system import TextSystem
from ppstructure.table.predict_table import TableSystem, to_excel
from ppstructure.utility import parse_args, draw_structure_result
from ppstructure.recovery.docx import convert_info_docx
from ppstructure.recovery.recovery_to_doc import convert_info_docx
logger = get_logger()
......
......@@ -44,6 +44,12 @@ python3 -m pip install "paddlepaddle>=2.2" -i https://mirror.baidu.com/pypi/simp
更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
* **(2)安装依赖**
```bash
python3 -m pip install -r ppstructure/recovery/requirements.txt
```
<a name="2.2"></a>
### 2.2 安装PaddleOCR
......
......@@ -129,11 +129,25 @@ class TableSystem(object):
def rebuild_table(self, structure_res, dt_boxes, rec_res):
pred_structures, pred_bboxes = structure_res
dt_boxes, rec_res = self.filter_ocr_result(pred_bboxes,dt_boxes, rec_res)
matched_index = self.match_result(dt_boxes, pred_bboxes)
pred_html, pred = self.get_pred_html(pred_structures, matched_index,
rec_res)
return pred_html, pred
def filter_ocr_result(self, pred_bboxes,dt_boxes, rec_res):
y1 = pred_bboxes[:,1::2].min()
new_dt_boxes = []
new_rec_res = []
for box,rec in zip(dt_boxes, rec_res):
if np.max(box[1::2]) < y1:
continue
new_dt_boxes.append(box)
new_rec_res.append(rec)
return new_dt_boxes, new_rec_res
def match_result(self, dt_boxes, pred_bboxes):
matched = {}
for i, gt_box in enumerate(dt_boxes):
......
......@@ -21,6 +21,18 @@ function func_parser_params(){
echo ${tmp}
}
function set_dynamic_epoch(){
string=$1
num=$2
_str=${string:1:6}
IFS="C"
arr=(${_str})
M=${arr[0]}
P=${arr[1]}
ep=`expr $num \* $M \* $P`
echo $ep
}
function func_sed_params(){
filename=$1
line=$2
......@@ -139,10 +151,11 @@ else
device_num=${params_list[4]}
IFS=";"
if [ ${precision} = "null" ];then
precision="fp32"
if [ ${precision} = "fp16" ];then
precision="amp"
fi
epoch=$(set_dynamic_epoch $device_num $epoch)
fp_items_list=($precision)
batch_size_list=($batch_size)
device_num_list=($device_num)
......@@ -150,10 +163,16 @@ fi
IFS="|"
for batch_size in ${batch_size_list[*]}; do
for precision in ${fp_items_list[*]}; do
for train_precision in ${fp_items_list[*]}; do
for device_num in ${device_num_list[*]}; do
# sed batchsize and precision
func_sed_params "$FILENAME" "${line_precision}" "$precision"
if [ ${train_precision} = "amp" ];then
precision="fp16"
else
precision="fp32"
fi
func_sed_params "$FILENAME" "${line_precision}" "$train_precision"
func_sed_params "$FILENAME" "${line_batchsize}" "$MODE=$batch_size"
func_sed_params "$FILENAME" "${line_epoch}" "$MODE=$epoch"
gpu_id=$(set_gpu_id $device_num)
......
......@@ -13,7 +13,7 @@ train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train
norm_train:tools/train.py -c configs/det/det_r50_db++_ic15.yml -o Global.pretrained_model=./pretrain_models/ResNet50_dcn_asf_synthtext_pretrained
norm_train:tools/train.py -c configs/det/det_r50_db++_icdar15.yml -o Global.pretrained_model=./pretrain_models/ResNet50_dcn_asf_synthtext_pretrained
pact_train:null
fpgm_train:null
distill_train:null
......@@ -27,7 +27,7 @@ null:null
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.checkpoints:
norm_export:tools/export_model.py -c configs/det/det_r50_db++_ic15.yml -o
norm_export:tools/export_model.py -c configs/det/det_r50_db++_icdar15.yml -o
quant_export:null
fpgm_export:null
distill_export:null
......@@ -35,7 +35,7 @@ export1:null
export2:null
inference_dir:null
train_model:./inference/det_r50_db++_train/best_accuracy
infer_export:tools/export_model.py -c configs/det/det_r50_db++_ic15.yml -o
infer_export:tools/export_model.py -c configs/det/det_r50_db++_icdar15.yml -o
infer_quant:False
inference:tools/infer/predict_det.py --det_algorithm="DB++"
--use_gpu:True|False
......@@ -51,9 +51,3 @@ null:null
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,640,640]}];[{float32,[3,960,960]}]
===========================train_benchmark_params==========================
batch_size:8|16
fp_items:fp32|fp16
epoch:2
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
......@@ -6,7 +6,7 @@ Global.use_gpu:True|True
Global.auto_cast:fp32
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=50
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=128
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=2
Global.pretrained_model:./pretrain_models/en_ppocr_mobile_v2.0_table_structure_train/best_accuracy
train_model_name:latest
train_infer_img_dir:./ppstructure/docs/table/table.jpg
......
Global:
use_gpu: True
epoch_num: 6
log_smooth_window: 50
print_batch_step: 50
save_model_dir: ./output/rec/rec_r32_gaspin_bilstm_att/
save_epoch_step: 3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [0, 2000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path: ./ppocr/utils/dict/spin_dict.txt
max_text_length: 25
infer_mode: False
use_space_char: False
save_res_path: ./output/rec/predicts_r32_gaspin_bilstm_att.txt
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
lr:
name: Piecewise
decay_epochs: [3, 4, 5]
values: [0.001, 0.0003, 0.00009, 0.000027]
clip_norm: 5
Architecture:
model_type: rec
algorithm: SPIN
in_channels: 1
Transform:
name: GA_SPIN
offsets: True
default_type: 6
loc_lr: 0.1
stn: True
Backbone:
name: ResNet32
out_channels: 512
Neck:
name: SequenceEncoder
encoder_type: cascadernn
hidden_size: 256
out_channels: [256, 512]
with_linear: True
Head:
name: SPINAttentionHead
hidden_size: 256
Loss:
name: SPINAttentionLoss
ignore_index: 0
PostProcess:
name: SPINLabelDecode
use_space_char: False
Metric:
name: RecMetric
main_indicator: acc
is_filter: True
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ic15_data/
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SPINLabelEncode: # Class handling label
- SPINRecResizeImg:
image_shape: [100, 32]
interpolation : 2
mean: [127.5]
std: [127.5]
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 128
drop_last: True
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ic15_data
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SPINLabelEncode: # Class handling label
- SPINRecResizeImg:
image_shape: [100, 32]
interpolation : 2
mean: [127.5]
std: [127.5]
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1
num_workers: 1
===========================train_params===========================
model_name:rec_r32_gaspin_bilstm_att
python:python
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=64
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_r32_gaspin_bilstm_att/rec_r32_gaspin_bilstm_att.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_r32_gaspin_bilstm_att/rec_r32_gaspin_bilstm_att.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.checkpoints:
norm_export:tools/export_model.py -c test_tipc/configs/rec_r32_gaspin_bilstm_att/rec_r32_gaspin_bilstm_att.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
train_model:./inference/rec_r32_gaspin_bilstm_att/best_accuracy
infer_export:tools/export_model.py -c test_tipc/configs/rec_r32_gaspin_bilstm_att/rec_r32_gaspin_bilstm_att.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/dict/spin_dict.txt --use_space_char=False --rec_image_shape="3,32,100" --rec_algorithm="SPIN"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:False|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,32,100]}]
......@@ -9,7 +9,7 @@
```shell
# 运行格式:bash test_tipc/prepare.sh train_benchmark.txt mode
bash test_tipc/prepare.sh test_tipc/configs/det_mv3_db_v2_0/train_benchmark.txt benchmark_train
bash test_tipc/prepare.sh test_tipc/configs/det_mv3_db_v2_0/train_infer_python.txt benchmark_train
```
## 1.2 功能测试
......@@ -33,7 +33,7 @@ dynamic_bs8_fp32_DP_N1C1为test_tipc/benchmark_train.sh传入的参数,格式
## 2. 日志输出
运行后将保存模型的训练日志和解析日志,使用 `test_tipc/configs/det_mv3_db_v2_0/train_benchmark.txt` 参数文件的训练日志解析结果是:
运行后将保存模型的训练日志和解析日志,使用 `test_tipc/configs/det_mv3_db_v2_0/train_infer_python.txt` 参数文件的训练日志解析结果是:
```
{"model_branch": "dygaph", "model_commit": "7c39a1996b19087737c05d883fd346d2f39dbcc0", "model_name": "det_mv3_db_v2_0_bs8_fp32_SingleP_DP", "batch_size": 8, "fp_item": "fp32", "run_process_type": "SingleP", "run_mode": "DP", "convergence_value": "5.413110", "convergence_key": "loss:", "ips": 19.333, "speed_unit": "samples/s", "device_num": "N1C1", "model_run_time": "0", "frame_commit": "8cc09552473b842c651ead3b9848d41827a3dbab", "frame_version": "0.0.0"}
......
......@@ -58,7 +58,7 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar --no-check-certificate
cd ./pretrain_models/ && tar xf ch_PP-OCRv3_det_distill_train.tar && cd ../
fi
if [ ${model_name} == "en_table_structure" ];then
if [ ${model_name} == "en_table_structure" ] || [ ${model_name} == "en_table_structure_PACT" ];then
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar --no-check-certificate
cd ./pretrain_models/ && tar xf en_ppocr_mobile_v2.0_table_structure_train.tar && cd ../
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar --no-check-certificate
......
......@@ -139,7 +139,7 @@ if [ ${MODE} = "whole_infer" ]; then
save_infer_dir="${infer_model}_klquant"
set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
export_log_path="${LOG_PATH}_export_${Count}.log"
export_log_path="${LOG_PATH}/${MODE}_export_${Count}.log"
export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key} > ${export_log_path} 2>&1 "
echo ${infer_run_exports[Count]}
echo $export_cmd
......
......@@ -265,7 +265,7 @@ else
if [ ${run_train} = "null" ]; then
continue
fi
set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
......@@ -287,11 +287,11 @@ else
set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config} "
cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_train_params1} ${set_amp_config} "
elif [ ${#ips} -le 15 ];then # train with multi-gpu
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
else # train with multi-machine
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
fi
# run train
eval $cmd
......
......@@ -107,7 +107,7 @@ def export_single_model(model,
]
# print([None, 3, 32, 128])
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] == "NRTR":
elif arch_config["algorithm"] in ["NRTR", "SPIN"]:
other_shape = [
paddle.static.InputSpec(
shape=[None, 1, 32, 100], dtype="float32"),
......
......@@ -89,6 +89,12 @@ class TextRecognizer(object):
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char
}
elif self.rec_algorithm == "SPIN":
postprocess_params = {
'name': 'SPINLabelDecode',
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char
}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, self.config = \
utility.create_predictor(args, 'rec', logger)
......@@ -266,6 +272,22 @@ class TextRecognizer(object):
return padding_im, resize_shape, pad_shape, valid_ratio
def resize_norm_img_spin(self, img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# return padding_im
img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC)
img = np.array(img, np.float32)
img = np.expand_dims(img, -1)
img = img.transpose((2, 0, 1))
mean = [127.5]
std = [127.5]
mean = np.array(mean, dtype=np.float32)
std = np.array(std, dtype=np.float32)
mean = np.float32(mean.reshape(1, -1))
stdinv = 1 / np.float32(std.reshape(1, -1))
img -= mean
img *= stdinv
return img
def resize_norm_img_svtr(self, img, image_shape):
imgC, imgH, imgW = image_shape
......@@ -346,6 +368,10 @@ class TextRecognizer(object):
self.rec_image_shape)
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
elif self.rec_algorithm == 'SPIN':
norm_img = self.resize_norm_img_spin(img_list[indices[ino]])
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
elif self.rec_algorithm == "ABINet":
norm_img = self.resize_norm_img_abinet(
img_list[indices[ino]], self.rec_image_shape)
......
......@@ -106,7 +106,7 @@ def main():
dt_boxes_list = []
for box in boxes:
tmp_json = {"transcription": ""}
tmp_json['points'] = list(box)
tmp_json['points'] = np.array(box).tolist()
dt_boxes_list.append(tmp_json)
det_box_json[k] = dt_boxes_list
save_det_path = os.path.dirname(config['Global'][
......@@ -118,7 +118,7 @@ def main():
# write result
for box in boxes:
tmp_json = {"transcription": ""}
tmp_json['points'] = list(box)
tmp_json['points'] = np.array(box).tolist()
dt_boxes_json.append(tmp_json)
save_det_path = os.path.dirname(config['Global'][
'save_res_path']) + "/det_results/"
......
......@@ -207,7 +207,7 @@ def train(config,
model.train()
use_srn = config['Architecture']['algorithm'] == "SRN"
extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR", "RobustScanner"]
extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR", "SPIN", "RobustScanner"]
extra_input = False
if config['Architecture']['algorithm'] == 'Distillation':
for key in config['Architecture']["Models"]:
......@@ -579,7 +579,7 @@ def preprocess(is_train=False):
'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'RobustScanner'
'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN', 'RobustScanner'
]
if use_xpu:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册