未验证 提交 b3912fcf 编写于 作者: U UserUnknownFactor 提交者: GitHub

Cherrypicking GH-10217 and GH-10216 to PaddlePaddle:dygraph (#10654)

* Don't break overall processing on a bad image

* Add preprocessing common to OCR tasks
Add preprocessing to options
上级 2bd552c8
...@@ -46,7 +46,7 @@ ppocr = importlib.import_module('ppocr', 'paddleocr') ...@@ -46,7 +46,7 @@ ppocr = importlib.import_module('ppocr', 'paddleocr')
ppstructure = importlib.import_module('ppstructure', 'paddleocr') ppstructure = importlib.import_module('ppstructure', 'paddleocr')
from ppocr.utils.logging import get_logger from ppocr.utils.logging import get_logger
from tools.infer import predict_system from tools.infer import predict_system
from ppocr.utils.utility import check_and_read, get_image_file_list from ppocr.utils.utility import check_and_read, get_image_file_list, alpha_to_color, binarize_img
from ppocr.utils.network import maybe_download, download_with_progressbar, is_link, confirm_model_dir_url from ppocr.utils.network import maybe_download, download_with_progressbar, is_link, confirm_model_dir_url
from tools.infer.utility import draw_ocr, str2bool, check_gpu from tools.infer.utility import draw_ocr, str2bool, check_gpu
from ppstructure.utility import init_args, draw_structure_result from ppstructure.utility import init_args, draw_structure_result
...@@ -513,7 +513,7 @@ def get_model_config(type, version, model_type, lang): ...@@ -513,7 +513,7 @@ def get_model_config(type, version, model_type, lang):
def img_decode(content: bytes): def img_decode(content: bytes):
np_arr = np.frombuffer(content, dtype=np.uint8) np_arr = np.frombuffer(content, dtype=np.uint8)
return cv2.imdecode(np_arr, cv2.IMREAD_COLOR) return cv2.imdecode(np_arr, cv2.IMREAD_UNCHANGED)
def check_img(img): def check_img(img):
...@@ -617,14 +617,17 @@ class PaddleOCR(predict_system.TextSystem): ...@@ -617,14 +617,17 @@ class PaddleOCR(predict_system.TextSystem):
super().__init__(params) super().__init__(params)
self.page_num = params.page_num self.page_num = params.page_num
def ocr(self, img, det=True, rec=True, cls=True): def ocr(self, img, det=True, rec=True, cls=True, bin=False, inv=False, alpha_color=(255, 255, 255)):
""" """
ocr with paddleocr OCR with PaddleOCR
args: args:
img: img for ocr, support ndarray, img_path and list or ndarray img: img for OCR, support ndarray, img_path and list or ndarray
det: use text detection or not. If false, only rec will be exec. Default is True det: use text detection or not. If False, only rec will be exec. Default is True
rec: use text recognition or not. If false, only det will be exec. Default is True rec: use text recognition or not. If False, only det will be exec. Default is True
cls: use angle classifier or not. Default is True. If true, the text with rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance. Text with rotation of 90 or 270 degrees can be recognized even if cls=False. cls: use angle classifier or not. Default is True. If True, the text with rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance. Text with rotation of 90 or 270 degrees can be recognized even if cls=False.
bin: binarize image to black and white. Default is False.
inv: invert image colors. Default is False.
alpha_color: set RGB color Tuple for transparent parts replacement. Default is pure white.
""" """
assert isinstance(img, (np.ndarray, list, str, bytes)) assert isinstance(img, (np.ndarray, list, str, bytes))
if isinstance(img, list) and det == True: if isinstance(img, list) and det == True:
...@@ -632,7 +635,7 @@ class PaddleOCR(predict_system.TextSystem): ...@@ -632,7 +635,7 @@ class PaddleOCR(predict_system.TextSystem):
exit(0) exit(0)
if cls == True and self.use_angle_cls == False: if cls == True and self.use_angle_cls == False:
logger.warning( logger.warning(
'Since the angle classifier is not initialized, the angle classifier will not be uesd during the forward process' 'Since the angle classifier is not initialized, it will not be used during the forward process'
) )
img = check_img(img) img = check_img(img)
...@@ -643,10 +646,23 @@ class PaddleOCR(predict_system.TextSystem): ...@@ -643,10 +646,23 @@ class PaddleOCR(predict_system.TextSystem):
imgs = img[:self.page_num] imgs = img[:self.page_num]
else: else:
imgs = [img] imgs = [img]
def preprocess_image(_image):
_image = alpha_to_color(_image, alpha_color)
if inv:
_image = cv2.bitwise_not(_image)
if bin:
_image = binarize_img(_image)
return _image
if det and rec: if det and rec:
ocr_res = [] ocr_res = []
for idx, img in enumerate(imgs): for idx, img in enumerate(imgs):
img = preprocess_image(img)
dt_boxes, rec_res, _ = self.__call__(img, cls) dt_boxes, rec_res, _ = self.__call__(img, cls)
if not dt_boxes and not rec_res:
ocr_res.append(None)
continue
tmp_res = [[box.tolist(), res] tmp_res = [[box.tolist(), res]
for box, res in zip(dt_boxes, rec_res)] for box, res in zip(dt_boxes, rec_res)]
ocr_res.append(tmp_res) ocr_res.append(tmp_res)
...@@ -654,7 +670,11 @@ class PaddleOCR(predict_system.TextSystem): ...@@ -654,7 +670,11 @@ class PaddleOCR(predict_system.TextSystem):
elif det and not rec: elif det and not rec:
ocr_res = [] ocr_res = []
for idx, img in enumerate(imgs): for idx, img in enumerate(imgs):
img = preprocess_image(img)
dt_boxes, elapse = self.text_detector(img) dt_boxes, elapse = self.text_detector(img)
if not dt_boxes:
ocr_res.append(None)
continue
tmp_res = [box.tolist() for box in dt_boxes] tmp_res = [box.tolist() for box in dt_boxes]
ocr_res.append(tmp_res) ocr_res.append(tmp_res)
return ocr_res return ocr_res
...@@ -663,6 +683,7 @@ class PaddleOCR(predict_system.TextSystem): ...@@ -663,6 +683,7 @@ class PaddleOCR(predict_system.TextSystem):
cls_res = [] cls_res = []
for idx, img in enumerate(imgs): for idx, img in enumerate(imgs):
if not isinstance(img, list): if not isinstance(img, list):
img = preprocess_image(img)
img = [img] img = [img]
if self.use_angle_cls and cls: if self.use_angle_cls and cls:
img, cls_res_tmp, elapse = self.text_classifier(img) img, cls_res_tmp, elapse = self.text_classifier(img)
...@@ -764,10 +785,15 @@ def main(): ...@@ -764,10 +785,15 @@ def main():
img_name = os.path.basename(img_path).split('.')[0] img_name = os.path.basename(img_path).split('.')[0]
logger.info('{}{}{}'.format('*' * 10, img_path, '*' * 10)) logger.info('{}{}{}'.format('*' * 10, img_path, '*' * 10))
if args.type == 'ocr': if args.type == 'ocr':
result = engine.ocr(img_path, result = engine.ocr(
img_path,
det=args.det, det=args.det,
rec=args.rec, rec=args.rec,
cls=args.use_angle_cls) cls=args.use_angle_cls,
bin=args.binarize,
inv=args.invert,
alpha_color=args.alphacolor
)
if result is not None: if result is not None:
lines = [] lines = []
for idx in range(len(result)): for idx in range(len(result)):
......
...@@ -75,6 +75,25 @@ def get_image_file_list(img_file): ...@@ -75,6 +75,25 @@ def get_image_file_list(img_file):
imgs_lists = sorted(imgs_lists) imgs_lists = sorted(imgs_lists)
return imgs_lists return imgs_lists
def binarize_img(img):
if len(img.shape) == 3 and img.shape[2] == 3:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # conversion to grayscale image
# use cv2 threshold binarization
_, gray = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
img = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
return img
def alpha_to_color(img, alpha_color=(255, 255, 255)):
if len(img.shape) == 3 and img.shape[2] == 4:
B, G, R, A = cv2.split(img)
alpha = A / 255
R = (alpha_color[0] * (1 - alpha) + R * alpha).astype(np.uint8)
G = (alpha_color[1] * (1 - alpha) + G * alpha).astype(np.uint8)
B = (alpha_color[2] * (1 - alpha) + B * alpha).astype(np.uint8)
img = cv2.merge((B, G, R))
return img
def check_and_read(img_path): def check_and_read(img_path):
if os.path.basename(img_path)[-3:] in ['gif', 'GIF']: if os.path.basename(img_path)[-3:] in ['gif', 'GIF']:
......
...@@ -16,7 +16,7 @@ import ast ...@@ -16,7 +16,7 @@ import ast
import PIL import PIL
from PIL import Image, ImageDraw, ImageFont from PIL import Image, ImageDraw, ImageFont
import numpy as np import numpy as np
from tools.infer.utility import draw_ocr_box_txt, str2bool, init_args as infer_args from tools.infer.utility import draw_ocr_box_txt, str2bool, str2int_tuple, init_args as infer_args
import math import math
...@@ -100,6 +100,21 @@ def init_args(): ...@@ -100,6 +100,21 @@ def init_args():
type=str2bool, type=str2bool,
default=False, default=False,
help='Whether to use pdf2docx api') help='Whether to use pdf2docx api')
parser.add_argument(
"--invert",
type=str2bool,
default=False,
help='Whether to invert image before processing')
parser.add_argument(
"--binarize",
type=str2bool,
default=False,
help='Whether to threshold binarize image before processing')
parser.add_argument(
"--alphacolor",
type=str2int_tuple,
default=(255, 255, 255),
help='Replacement color for the alpha channel, if the latter is present; R,G,B integers')
return parser return parser
......
...@@ -65,15 +65,25 @@ class TextSystem(object): ...@@ -65,15 +65,25 @@ class TextSystem(object):
self.crop_image_res_index += bbox_num self.crop_image_res_index += bbox_num
def __call__(self, img, cls=True): def __call__(self, img, cls=True):
time_dict = {'det': 0, 'rec': 0, 'csl': 0, 'all': 0} time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
if img is None:
logger.debug("no valid image provided")
return None, None, time_dict
start = time.time() start = time.time()
ori_im = img.copy() ori_im = img.copy()
dt_boxes, elapse = self.text_detector(img) dt_boxes, elapse = self.text_detector(img)
time_dict['det'] = elapse time_dict['det'] = elapse
logger.debug("dt_boxes num : {}, elapse : {}".format(
len(dt_boxes), elapse))
if dt_boxes is None: if dt_boxes is None:
return None, None logger.debug("no dt_boxes found, elapsed : {}".format(elapse))
end = time.time()
time_dict['all'] = end - start
return None, None, time_dict
else:
logger.debug("dt_boxes num : {}, elapsed : {}".format(
len(dt_boxes), elapse))
img_crop_list = [] img_crop_list = []
dt_boxes = sorted_boxes(dt_boxes) dt_boxes = sorted_boxes(dt_boxes)
...@@ -89,12 +99,12 @@ class TextSystem(object): ...@@ -89,12 +99,12 @@ class TextSystem(object):
img_crop_list, angle_list, elapse = self.text_classifier( img_crop_list, angle_list, elapse = self.text_classifier(
img_crop_list) img_crop_list)
time_dict['cls'] = elapse time_dict['cls'] = elapse
logger.debug("cls num : {}, elapse : {}".format( logger.debug("cls num : {}, elapsed : {}".format(
len(img_crop_list), elapse)) len(img_crop_list), elapse))
rec_res, elapse = self.text_recognizer(img_crop_list) rec_res, elapse = self.text_recognizer(img_crop_list)
time_dict['rec'] = elapse time_dict['rec'] = elapse
logger.debug("rec_res num : {}, elapse : {}".format( logger.debug("rec_res num : {}, elapsed : {}".format(
len(rec_res), elapse)) len(rec_res), elapse))
if self.args.save_crop_res: if self.args.save_crop_res:
self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list, self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
......
...@@ -29,8 +29,10 @@ from ppocr.utils.logging import get_logger ...@@ -29,8 +29,10 @@ from ppocr.utils.logging import get_logger
def str2bool(v): def str2bool(v):
return v.lower() in ("true", "t", "1") return v.lower() in ("true", "yes", "t", "y", "1")
def str2int_tuple(v):
return tuple([int(i.strip()) for i in v.split(",")])
def init_args(): def init_args():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册