From a2f95be7716be492c173f625efb70456350c08a5 Mon Sep 17 00:00:00 2001 From: xmy0916 <863299715@qq.com> Date: Thu, 10 Dec 2020 18:43:27 +0800 Subject: [PATCH] fix doc recognition ch&en --- doc/doc_ch/recognition.md | 18 +++++++++--------- doc/doc_en/recognition_en.md | 20 ++++++++++---------- 2 files changed, 19 insertions(+), 19 deletions(-) diff --git a/doc/doc_ch/recognition.md b/doc/doc_ch/recognition.md index 6c5efc06..769374ae 100644 --- a/doc/doc_ch/recognition.md +++ b/doc/doc_ch/recognition.md @@ -142,7 +142,7 @@ word_dict.txt 每行有一个单字,将字符与数字索引映射在一起, - 添加空格类别 -如果希望支持识别"空格"类别, 请将yml文件中的 `use_space_char` 字段设置为 `true`。 +如果希望支持识别"空格"类别, 请将yml文件中的 `use_space_char` 字段设置为 `True`。 @@ -193,8 +193,8 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t | 配置文件 | 算法名称 | backbone | trans | seq | pred | | :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | -| [rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml) | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | -| [rec_chinese_common_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_common_train_v1.1.yml) | CRNN | ResNet34_vd | None | BiLSTM | ctc | +| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | +| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) | CRNN | ResNet34_vd | None | BiLSTM | ctc | | rec_chinese_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | | rec_chinese_common_train.yml | CRNN | ResNet34_vd | None | BiLSTM | ctc | | rec_icdar15_train.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc | @@ -208,9 +208,9 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t | rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc | | rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn | -训练中文数据,推荐使用[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件: +训练中文数据,推荐使用[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件: -以 `rec_chinese_lite_train_v1.1.yml` 为例: +以 `rec_chinese_lite_train_v2.0.yml` 为例: ``` Global: ... @@ -220,7 +220,7 @@ Global: character_type: ch ... # 识别空格 - use_space_char: False + use_space_char: True Optimizer: @@ -300,7 +300,7 @@ Global: character_dict_path: ./ppocr/utils/dict/french_dict.txt ... # 识别空格 - use_space_char: False + use_space_char: True ... @@ -362,12 +362,12 @@ infer_img: doc/imgs_words/en/word_1.png word : joint ``` -预测使用的配置文件必须与训练一致,如您通过 `python3 tools/train.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml` 完成了中文模型的训练, +预测使用的配置文件必须与训练一致,如您通过 `python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml` 完成了中文模型的训练, 您可以使用如下命令进行中文模型预测。 ``` # 预测中文结果 -python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/ch/word_1.jpg +python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/ch/word_1.jpg ``` 预测图片: diff --git a/doc/doc_en/recognition_en.md b/doc/doc_en/recognition_en.md index daa12820..da5a7c47 100644 --- a/doc/doc_en/recognition_en.md +++ b/doc/doc_en/recognition_en.md @@ -135,7 +135,7 @@ If you need to customize dic file, please add character_dict_path field in confi - Add space category -If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `true`. +If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`. **Note: use_space_char only takes effect when character_type=ch** @@ -183,8 +183,8 @@ If the evaluation set is large, the test will be time-consuming. It is recommend | Configuration file | Algorithm | backbone | trans | seq | pred | | :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | -| [rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml) | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | -| [rec_chinese_common_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_common_train_v1.1.yml) | CRNN | ResNet34_vd | None | BiLSTM | ctc | +| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | +| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) | CRNN | ResNet34_vd | None | BiLSTM | ctc | | rec_chinese_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | | rec_chinese_common_train.yml | CRNN | ResNet34_vd | None | BiLSTM | ctc | | rec_icdar15_train.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc | @@ -198,9 +198,9 @@ If the evaluation set is large, the test will be time-consuming. It is recommend | rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc | For training Chinese data, it is recommended to use -[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file: +[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file: co -Take `rec_chinese_lite_train_v1.1.yml` as an example: +Take `rec_chinese_lite_train_v2.0.yml` as an example: ``` Global: ... @@ -210,7 +210,7 @@ Global: character_type: ch ... # Whether to recognize spaces - use_space_char: False + use_space_char: True Optimizer: @@ -290,7 +290,7 @@ Global: character_dict_path: ./ppocr/utils/dict/french_dict.txt ... # Whether to recognize spaces - use_space_char: False + use_space_char: True ... @@ -337,7 +337,7 @@ The default prediction picture is stored in `infer_img`, and the weight is speci ``` # Predict English results -python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/en/word_1.jpg +python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/en/word_1.jpg ``` Input image: @@ -352,11 +352,11 @@ infer_img: doc/imgs_words/en/word_1.png word : joint ``` -The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml`, you can use the following command to predict the Chinese model: +The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml`, you can use the following command to predict the Chinese model: ``` # Predict Chinese results -python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/ch/word_1.jpg +python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/ch/word_1.jpg ``` Input image: -- GitLab