From 9e9e6d37c1ef4249eca97da0a8016ce80fe31bef Mon Sep 17 00:00:00 2001 From: andyjpaddle Date: Wed, 14 Sep 2022 06:50:43 +0000 Subject: [PATCH] update tipc doc --- .../docs/mac_test_train_inference_python.md | 41 ++++------ test_tipc/docs/test_inference_cpp.md | 22 +++-- test_tipc/docs/test_paddle2onnx.md | 15 ++-- test_tipc/docs/test_ptq_inference_python.md | 51 ++++++++++++ test_tipc/docs/test_serving.md | 51 +++--------- test_tipc/docs/test_train_inference_python.md | 80 +++++++++++-------- .../docs/win_test_train_inference_python.md | 42 ++++------ 7 files changed, 162 insertions(+), 140 deletions(-) create mode 100644 test_tipc/docs/test_ptq_inference_python.md diff --git a/test_tipc/docs/mac_test_train_inference_python.md b/test_tipc/docs/mac_test_train_inference_python.md index c37291a8..2c25bcdd 100644 --- a/test_tipc/docs/mac_test_train_inference_python.md +++ b/test_tipc/docs/mac_test_train_inference_python.md @@ -1,6 +1,6 @@ # Mac端基础训练预测功能测试 -Mac端基础训练预测功能测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型CPU训练,包括裁剪、量化、蒸馏训练,以及评估、CPU推理等基本功能。 +Mac端基础训练预测功能测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型CPU训练,包括裁剪、PACT在线量化、蒸馏训练,以及评估、CPU推理等基本功能。 注:Mac端测试用法同linux端测试方法类似,但是无需测试需要在GPU上运行的测试。 @@ -10,7 +10,7 @@ Mac端基础训练预测功能测试的主程序为`test_train_inference_python. | 算法名称 | 模型名称 | 单机单卡(CPU) | 单机多卡 | 多机多卡 | 模型压缩(CPU) | | :---- | :---- | :---- | :---- | :---- | :---- | -| DB | ch_ppocr_mobile_v2.0_det| 正常训练 | - | - | 正常训练:FPGM裁剪、PACT量化
离线量化(无需训练) | +| DB | ch_ppocr_mobile_v2.0_det| 正常训练 | - | - | 正常训练:FPGM裁剪、PACT量化 | - 预测相关:基于训练是否使用量化,可以将训练产出的模型可以分为`正常模型`和`量化模型`,这两类模型对应的预测功能汇总如下, @@ -26,7 +26,7 @@ Mac端基础训练预测功能测试的主程序为`test_train_inference_python. Mac端无GPU,环境准备只需要Python环境即可,安装PaddlePaddle等依赖参考下述文档。 ### 2.1 安装依赖 -- 安装PaddlePaddle >= 2.0 +- 安装PaddlePaddle >= 2.3 - 安装PaddleOCR依赖 ``` pip install -r ../requirements.txt @@ -37,7 +37,7 @@ Mac端无GPU,环境准备只需要Python环境即可,安装PaddlePaddle等 cd AutoLog pip install -r requirements.txt python setup.py bdist_wheel - pip install ./dist/auto_log-1.0.0-py3-none-any.whl + pip install ./dist/auto_log-1.2.0-py3-none-any.whl cd ../ ``` - 安装PaddleSlim (可选) @@ -49,53 +49,46 @@ Mac端无GPU,环境准备只需要Python环境即可,安装PaddlePaddle等 ### 2.2 功能测试 -先运行`prepare.sh`准备数据和模型,然后运行`test_train_inference_python.sh`进行测试,最终在```test_tipc/output```目录下生成`python_infer_*.log`格式的日志文件。 +先运行`prepare.sh`准备数据和模型,然后运行`test_train_inference_python.sh`进行测试,最终在```test_tipc/output```目录下生成`,model_name/lite_train_lite_infer/*.log`格式的日志文件。 -`test_train_inference_python.sh`包含5种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是: +`test_train_inference_python.sh`包含基础链条的4种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是: - 模式1:lite_train_lite_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度; ```shell # 同linux端运行不同的是,Mac端测试使用新的配置文件mac_ppocr_det_mobile_params.txt, # 配置文件中默认去掉了GPU和mkldnn相关的测试链条 -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'lite_train_lite_infer' -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'lite_train_lite_infer' +bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'lite_train_lite_infer' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'lite_train_lite_infer' ``` - 模式2:lite_train_whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理; ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'lite_train_whole_infer' -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'lite_train_whole_infer' +bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'lite_train_whole_infer' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'lite_train_whole_infer' ``` - 模式3:whole_infer,不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度; ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'whole_infer' +bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'whole_infer' # 用法1: -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'whole_infer' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'whole_infer' # 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号 -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'whole_infer' '1' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'whole_infer' '1' ``` - 模式4:whole_train_whole_infer,CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度;(Mac端不建议运行此模式) ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'whole_train_whole_infer' -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'whole_train_whole_infer' +bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'whole_train_whole_infer' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt 'whole_train_whole_infer' ``` -- 模式5:klquant_whole_infer,测试离线量化; -```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det_KL/model_linux_gpu_normal_normal_infer_python_mac_cpu.txt 'klquant_whole_infer' -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det_KL/model_linux_gpu_normal_normal_infer_python_mac_cpu.txt 'klquant_whole_infer' -``` - 运行相应指令后,在`test_tipc/output`文件夹下自动会保存运行日志。如`lite_train_lite_infer`模式下,会运行训练+inference的链条,因此,在`test_tipc/output`文件夹有以下文件: ``` -test_tipc/output/ +test_tipc/output/model_name/lite_train_lite_infer/ |- results_python.log # 运行指令状态的日志 |- norm_train_gpus_-1_autocast_null/ # CPU上正常训练的训练日志和模型保存文件夹 -|- pact_train_gpus_-1_autocast_null/ # CPU上量化训练的训练日志和模型保存文件夹 ...... -|- python_infer_cpu_usemkldnn_False_threads_1_batchsize_1.log # CPU上关闭Mkldnn线程数设置为1,测试batch_size=1条件下的预测运行日志 +|- python_infer_cpu_usemkldnn_False_threads_1_precision_fp32_batchsize_1.log # CPU上关闭Mkldnn线程数设置为1,测试batch_size=1条件下的fp32精度预测运行日志 ...... ``` diff --git a/test_tipc/docs/test_inference_cpp.md b/test_tipc/docs/test_inference_cpp.md index e662f4ba..5d8aeda6 100644 --- a/test_tipc/docs/test_inference_cpp.md +++ b/test_tipc/docs/test_inference_cpp.md @@ -17,15 +17,15 @@ C++预测功能测试的主程序为`test_inference_cpp.sh`,可以测试基于 运行环境配置请参考[文档](./install.md)的内容配置TIPC的运行环境。 ### 2.1 功能测试 -先运行`prepare.sh`准备数据和模型,然后运行`test_inference_cpp.sh`进行测试,最终在```test_tipc/output```目录下生成`cpp_infer_*.log`后缀的日志文件。 +先运行`prepare.sh`准备数据和模型,然后运行`test_inference_cpp.sh`进行测试,最终在```test_tipc/output/{model_name}/cpp_infer```目录下生成`cpp_infer_*.log`后缀的日志文件。 ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_infer_cpp_linux_gpu_cpu.txt "cpp_infer" +bash test_tipc/prepare.sh ./test_tipc/configs/ch_PP-OCRv2_rec/model_linux_gpu_normal_normal_infer_cpp_linux_gpu_cpu.txt "cpp_infer" # 用法1: -bash test_tipc/test_inference_cpp.sh test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_infer_cpp_linux_gpu_cpu.txt +bash test_tipc/test_inference_cpp.sh test_tipc/configs/ch_PP-OCRv2_rec/model_linux_gpu_normal_normal_infer_cpp_linux_gpu_cpu.txt # 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号 -bash test_tipc/test_inference_cpp.sh test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_infer_cpp_linux_gpu_cpu.txt '1' +bash test_tipc/test_inference_cpp.sh test_tipc/configs/ch_PP-OCRv2_rec/model_linux_gpu_normal_normal_infer_cpp_linux_gpu_cpu.txt '1' ``` 运行预测指令后,在`test_tipc/output`文件夹下自动会保存运行日志,包括以下文件: @@ -33,23 +33,21 @@ bash test_tipc/test_inference_cpp.sh test_tipc/configs/ch_ppocr_mobile_v2.0_det/ ```shell test_tipc/output/ |- results_cpp.log # 运行指令状态的日志 -|- cpp_infer_cpu_usemkldnn_False_threads_1_precision_fp32_batchsize_1.log # CPU上不开启Mkldnn,线程数设置为1,测试batch_size=1条件下的预测运行日志 -|- cpp_infer_cpu_usemkldnn_False_threads_6_precision_fp32_batchsize_1.log # CPU上不开启Mkldnn,线程数设置为6,测试batch_size=1条件下的预测运行日志 -|- cpp_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log # GPU上不开启TensorRT,测试batch_size=1的fp32精度预测日志 -|- cpp_infer_gpu_usetrt_True_precision_fp16_batchsize_1.log # GPU上开启TensorRT,测试batch_size=1的fp16精度预测日志 +|- cpp_infer_cpu_usemkldnn_False_threads_6_precision_fp32_batchsize_6.log # CPU上不开启Mkldnn,线程数设置为6,测试batch_size=6条件下的预测运行日志 +|- cpp_infer_gpu_usetrt_False_precision_fp32_batchsize_6.log # GPU上不开启TensorRT,测试batch_size=6的fp32精度预测日志 ...... ``` 其中results_cpp.log中包含了每条指令的运行状态,如果运行成功会输出: ``` -Run successfully with command - ./deploy/cpp_infer/build/ppocr det --use_gpu=False --enable_mkldnn=False --cpu_threads=6 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmar k=True > ./test_tipc/output/cpp_infer_cpu_usemkldnn_False_threads_6_precision_fp32_batchsize_1.log 2>&1 ! -Run successfully with command - ./deploy/cpp_infer/build/ppocr det --use_gpu=True --use_tensorrt=False --precision=fp32 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark =True > ./test_tipc/output/cpp_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log 2>&1 ! +[33m Run successfully with command - ch_PP-OCRv2_rec - ./deploy/cpp_infer/build/ppocr --rec_char_dict_path=./ppocr/utils/ppocr_keys_v1.txt --rec_img_h=32 --use_gpu=True --use_tensorrt=False --precision=fp32 --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --rec_batch_num=6 --image_dir=./inference/rec_inference/ --benchmark=True --det=False --rec=True --cls=False --use_angle_cls=False > ./test_tipc/output/ch_PP-OCRv2_rec/cpp_infer/cpp_infer_gpu_usetrt_False_precision_fp32_batchsize_6.log 2>&1 !  + Run successfully with command - ch_PP-OCRv2_rec - ./deploy/cpp_infer/build/ppocr --rec_char_dict_path=./ppocr/utils/ppocr_keys_v1.txt --rec_img_h=32 --use_gpu=False --enable_mkldnn=False --cpu_threads=6 --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --rec_batch_num=6 --image_dir=./inference/rec_inference/ --benchmark=True --det=False --rec=True --cls=False --use_angle_cls=False > ./test_tipc/output/ch_PP-OCRv2_rec/cpp_infer/cpp_infer_cpu_usemkldnn_False_threads_6_precision_fp32_batchsize_6.log 2>&1 !  ...... ``` 如果运行失败,会输出: ``` -Run failed with command - ./deploy/cpp_infer/build/ppocr det --use_gpu=True --use_tensorrt=True --precision=fp32 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/cpp_infer_gpu_usetrt_True_precision_fp32_batchsize_1.log 2>&1 ! -Run failed with command - ./deploy/cpp_infer/build/ppocr det --use_gpu=True --use_tensorrt=True --precision=fp16 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/cpp_infer_gpu_usetrt_True_precision_fp16_batchsize_1.log 2>&1 ! +Run failed with command - ch_PP-OCRv2_rec - ./deploy/cpp_infer/build/ppocr --rec_char_dict_path=./ppocr/utils/ppocr_keys_v1.txt --rec_img_h=32 --use_gpu=True --use_tensorrt=False --precision=fp32 --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --rec_batch_num=6 --image_dir=./inference/rec_inference/ --benchmark=True --det=False --rec=True --cls=False --use_angle_cls=False > ./test_tipc/output/ch_PP-OCRv2_rec/cpp_infer/cpp_infer_gpu_usetrt_False_precision_fp32_batchsize_6.log 2>&1 ! +Run failed with command - ch_PP-OCRv2_rec - ./deploy/cpp_infer/build/ppocr --rec_char_dict_path=./ppocr/utils/ppocr_keys_v1.txt --rec_img_h=32 --use_gpu=False --enable_mkldnn=False --cpu_threads=6 --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --rec_batch_num=6 --image_dir=./inference/rec_inference/ --benchmark=True --det=False --rec=True --cls=False --use_angle_cls=False > ./test_tipc/output/ch_PP-OCRv2_rec/cpp_infer/cpp_infer_cpu_usemkldnn_False_threads_6_precision_fp32_batchsize_6.log 2>&1 ! ...... ``` 可以很方便的根据results_cpp.log中的内容判定哪一个指令运行错误。 diff --git a/test_tipc/docs/test_paddle2onnx.md b/test_tipc/docs/test_paddle2onnx.md index df273477..299621d0 100644 --- a/test_tipc/docs/test_paddle2onnx.md +++ b/test_tipc/docs/test_paddle2onnx.md @@ -15,29 +15,30 @@ PaddleServing预测功能测试的主程序为`test_paddle2onnx.sh`,可以测 ## 2. 测试流程 ### 2.1 功能测试 -先运行`prepare.sh`准备数据和模型,然后运行`test_paddle2onnx.sh`进行测试,最终在```test_tipc/output```目录下生成`paddle2onnx_infer_*.log`后缀的日志文件。 +先运行`prepare.sh`准备数据和模型,然后运行`test_paddle2onnx.sh`进行测试,最终在```test_tipc/output/{model_name}/paddle2onnx```目录下生成`paddle2onnx_infer_*.log`后缀的日志文件。 ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile/model_linux_gpu_normal_normal_paddle2onnx_python_linux_cpu.txt "paddle2onnx_infer" +bash test_tipc/prepare.sh ./test_tipc/configs/ch_PP-OCRv2_det/model_linux_gpu_normal_normal_paddle2onnx_python_linux_cpu.txt "paddle2onnx_infer" # 用法: -bash test_tipc/test_paddle2onnx.sh ./test_tipc/configs/ppocr_det_mobile/model_linux_gpu_normal_normal_paddle2onnx_python_linux_cpu.txt +bash test_tipc/test_paddle2onnx.sh ./test_tipc/configs/ch_PP-OCRv2_det/model_linux_gpu_normal_normal_paddle2onnx_python_linux_cpu.txt ``` #### 运行结果 -各测试的运行情况会打印在 `test_tipc/output/results_paddle2onnx.log` 中: +各测试的运行情况会打印在 `test_tipc/output/{model_name}/paddle2onnx/results_paddle2onnx.log` 中: 运行成功时会输出: ``` -Run successfully with command - paddle2onnx --model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --model_filename=inference.pdmodel --params_filename=inference.pdiparams --save_file=./inference/det_mobile_onnx/model.onnx --opset_version=10 --enable_onnx_checker=True! -Run successfully with command - python test_tipc/onnx_inference/predict_det.py --use_gpu=False --image_dir=./inference/ch_det_data_50/all-sum-510/ --det_model_dir=./inference/det_mobile_onnx/model.onnx 2>&1 ! +Run successfully with command - ch_PP-OCRv2_det - paddle2onnx --model_dir=./inference/ch_PP-OCRv2_det_infer/ --model_filename=inference.pdmodel --params_filename=inference.pdiparams --save_file=./inference/det_v2_onnx/model.onnx --opset_version=10 --enable_onnx_checker=True! +Run successfully with command - ch_PP-OCRv2_det - python3.7 tools/infer/predict_det.py --use_gpu=True --image_dir=./inference/ch_det_data_50/all-sum-510/ --det_model_dir=./inference/det_v2_onnx/model.onnx --use_onnx=True > ./test_tipc/output/ch_PP-OCRv2_det/paddle2onnx/paddle2onnx_infer_gpu.log 2>&1 ! +Run successfully with command - ch_PP-OCRv2_det - python3.7 tools/infer/predict_det.py --use_gpu=False --image_dir=./inference/ch_det_data_50/all-sum-510/ --det_model_dir=./inference/det_v2_onnx/model.onnx --use_onnx=True > ./test_tipc/output/ch_PP-OCRv2_det/paddle2onnx/paddle2onnx_infer_cpu.log 2>&1 ! ``` 运行失败时会输出: ``` -Run failed with command - paddle2onnx --model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --model_filename=inference.pdmodel --params_filename=inference.pdiparams --save_file=./inference/det_mobile_onnx/model.onnx --opset_version=10 --enable_onnx_checker=True! +Run failed with command - ch_PP-OCRv2_det - paddle2onnx --model_dir=./inference/ch_PP-OCRv2_det_infer/ --model_filename=inference.pdmodel --params_filename=inference.pdiparams --save_file=./inference/det_v2_onnx/model.onnx --opset_version=10 --enable_onnx_checker=True! ... ``` diff --git a/test_tipc/docs/test_ptq_inference_python.md b/test_tipc/docs/test_ptq_inference_python.md new file mode 100644 index 00000000..7887c0b5 --- /dev/null +++ b/test_tipc/docs/test_ptq_inference_python.md @@ -0,0 +1,51 @@ +# Linux GPU/CPU KL离线量化训练推理测试 + +Linux GPU/CPU KL离线量化训练推理测试的主程序为`test_ptq_inference_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能。 + +## 1. 测试结论汇总 +- 训练相关: + +| 算法名称 | 模型名称 | 单机单卡 | +| :----: | :----: | :----: | +| | model_name | KL离线量化训练 | + +- 推理相关: + +| 算法名称 | 模型名称 | device_CPU | device_GPU | batchsize | +| :----: | :----: | :----: | :----: | :----: | +| | model_name | 支持 | 支持 | 1 | + +## 2. 测试流程 + +### 2.1 准备数据和模型 + +先运行`prepare.sh`准备数据和模型,然后运行`test_ptq_inference_python.sh`进行测试,最终在```test_tipc/output/{model_name}/whole_infer```目录下生成`python_infer_*.log`后缀的日志文件。 + +```shell +bash test_tipc/prepare.sh ./test_tipc/configs/ch_PP-OCRv2_det/train_ptq_infer_python.txt "whole_infer" + +# 用法: +bash test_tipc/test_ptq_inference_python.sh ./test_tipc/configs/ch_PP-OCRv2_det/train_ptq_infer_python.txt "whole_infer" +``` + +#### 运行结果 + +各测试的运行情况会打印在 `test_tipc/output/{model_name}/paddle2onnx/results_paddle2onnx.log` 中: +运行成功时会输出: + +``` +Run successfully with command - ch_PP-OCRv2_det_KL - python3.7 deploy/slim/quantization/quant_kl.py -c configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_cml.yml -o Global.pretrained_model=./inference/ch_PP-OCRv2_det_infer/ Global.save_inference_dir=./inference/ch_PP-OCRv2_det_infer/_klquant > ./test_tipc/output/ch_PP-OCRv2_det_KL/whole_infer/whole_infer_export_0.log 2>&1 ! +Run successfully with command - ch_PP-OCRv2_det_KL - python3.7 tools/infer/predict_det.py --use_gpu=False --enable_mkldnn=False --cpu_threads=6 --det_model_dir=./inference/ch_PP-OCRv2_det_infer/_klquant --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --precision=int8 > ./test_tipc/output/ch_PP-OCRv2_det_KL/whole_infer/python_infer_cpu_usemkldnn_False_threads_6_precision_int8_batchsize_1.log 2>&1 ! +Run successfully with command - ch_PP-OCRv2_det_KL - python3.7 tools/infer/predict_det.py --use_gpu=True --use_tensorrt=False --precision=int8 --det_model_dir=./inference/ch_PP-OCRv2_det_infer/_klquant --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ > ./test_tipc/output/ch_PP-OCRv2_det_KL/whole_infer/python_infer_gpu_usetrt_False_precision_int8_batchsize_1.log 2>&1 ! +``` + +运行失败时会输出: + +``` +Run failed with command - ch_PP-OCRv2_det_KL - python3.7 deploy/slim/quantization/quant_kl.py -c configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_cml.yml -o Global.pretrained_model=./inference/ch_PP-OCRv2_det_infer/ Global.save_inference_dir=./inference/ch_PP-OCRv2_det_infer/_klquant > ./test_tipc/output/ch_PP-OCRv2_det_KL/whole_infer/whole_infer_export_0.log 2>&1 ! +... +``` + +## 3. 更多教程 + +本文档为功能测试用,更详细的量化使用教程请参考:[量化](../../deploy/slim/quantization/README.md) diff --git a/test_tipc/docs/test_serving.md b/test_tipc/docs/test_serving.md index 71f01c0d..ef388887 100644 --- a/test_tipc/docs/test_serving.md +++ b/test_tipc/docs/test_serving.md @@ -18,71 +18,44 @@ PaddleServing预测功能测试的主程序为`test_serving_infer_python.sh`和` ### 2.1 功能测试 **python serving** -先运行`prepare.sh`准备数据和模型,然后运行`test_serving_infer_python.sh`进行测试,最终在```test_tipc/output```目录下生成`serving_infer_python*.log`后缀的日志文件。 +先运行`prepare.sh`准备数据和模型,然后运行`test_serving_infer_python.sh`进行测试,最终在```test_tipc/output/{model_name}/serving_infer/python```目录下生成`python_*.log`后缀的日志文件。 ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt "serving_infer" +bash test_tipc/prepare.sh ./test_tipc/configs/ch_PP-OCRv2/model_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt "serving_infer" # 用法: -bash test_tipc/test_serving_infer_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt "serving_infer" +bash test_tipc/test_serving_infer_python.sh ./test_tipc/configs/ch_PP-OCRv2/model_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt "serving_infer" ``` **cpp serving** -先运行`prepare.sh`准备数据和模型,然后运行`test_serving_infer_cpp.sh`进行测试,最终在```test_tipc/output```目录下生成`serving_infer_cpp*.log`后缀的日志文件。 +先运行`prepare.sh`准备数据和模型,然后运行`test_serving_infer_cpp.sh`进行测试,最终在```test_tipc/output/{model_name}/serving_infer/cpp```目录下生成`cpp_*.log`后缀的日志文件。 ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0/model_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt "serving_infer" +bash test_tipc/prepare.sh ./test_tipc/configs/ch_PP-OCRv2/model_linux_gpu_normal_normal_serving_cpp_linux_gpu_cpu.txt "serving_infer" # 用法: -bash test_tipc/test_serving_infer_cpp.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0/model_linux_gpu_normal_normal_serving_cpp_linux_gpu_cpu.txt "serving_infer" +bash test_tipc/test_serving_infer_cpp.sh ./test_tipc/configs/ch_PP-OCRv2/model_linux_gpu_normal_normal_serving_cpp_linux_gpu_cpu.txt "serving_infer" ``` #### 运行结果 -各测试的运行情况会打印在 `test_tipc/output/results_serving.log` 中: +各测试的运行情况会打印在 `test_tipc/output/{model_name}/serving_infer/python(cpp)/results_python(cpp)_serving.log` 中: 运行成功时会输出: ``` -Run successfully with command - python3.7 pipeline_http_client.py --image_dir=../../doc/imgs > ../../tests/output/server_infer_cpu_usemkldnn_True_threads_1_batchsize_1.log 2>&1 ! -Run successfully with command - xxxxx +Run successfully with command - ch_PP-OCRv2_rec - nohup python3.7 web_service_rec.py --config=config.yml --opt op.rec.concurrency="1" op.det.local_service_conf.devices= op.det.local_service_conf.use_mkldnn=False op.det.local_service_conf.thread_num=6 op.rec.local_service_conf.model_config=ppocr_rec_v2_serving > ./test_tipc/output/ch_PP-OCRv2_rec/serving_infer/python/python_server_cpu_usemkldnn_False_threads_6.log 2>&1 &! +Run successfully with command - ch_PP-OCRv2_rec - python3.7 pipeline_http_client.py --det=False --image_dir=../../inference/rec_inference > ./test_tipc/output/ch_PP-OCRv2_rec/serving_infer/python/python_client_cpu_pipeline_http_usemkldnn_False_threads_6_batchsize_1.log 2>&1 ! ... ``` 运行失败时会输出: ``` -Run failed with command - python3.7 pipeline_http_client.py --image_dir=../../doc/imgs > ../../tests/output/server_infer_cpu_usemkldnn_True_threads_1_batchsize_1.log 2>&1 ! -Run failed with command - python3.7 pipeline_http_client.py --image_dir=../../doc/imgs > ../../tests/output/server_infer_cpu_usemkldnn_True_threads_6_batchsize_1.log 2>&1 ! -Run failed with command - xxxxx +Run failed with command - ch_PP-OCRv2_rec - nohup python3.7 web_service_rec.py --config=config.yml --opt op.rec.concurrency="1" op.det.local_service_conf.devices= op.det.local_service_conf.use_mkldnn=False op.det.local_service_conf.thread_num=6 op.rec.local_service_conf.model_config=ppocr_rec_v2_serving > ./test_tipc/output/ch_PP-OCRv2_rec/serving_infer/python/python_server_cpu_usemkldnn_False_threads_6.log 2>&1 &! +Run failed with command - ch_PP-OCRv2_rec - python3.7 pipeline_http_client.py --det=False --image_dir=../../inference/rec_inference > ./test_tipc/output/ch_PP-OCRv2_rec/serving_infer/python/python_client_cpu_pipeline_http_usemkldnn_False_threads_6_batchsize_1.log 2>&1 ! ... ``` -详细的预测结果会存在 test_tipc/output/ 文件夹下,例如`server_infer_gpu_usetrt_True_precision_fp16_batchsize_1.log`中会返回检测框的坐标: - -``` -{'err_no': 0, 'err_msg': '', 'key': ['dt_boxes'], 'value': ['[[[ 78. 642.]\n [409. 640.]\n [409. 657.]\n -[ 78. 659.]]\n\n [[ 75. 614.]\n [211. 614.]\n [211. 635.]\n [ 75. 635.]]\n\n -[[103. 554.]\n [135. 554.]\n [135. 575.]\n [103. 575.]]\n\n [[ 75. 531.]\n -[347. 531.]\n [347. 549.]\n [ 75. 549.] ]\n\n [[ 76. 503.]\n [309. 498.]\n -[309. 521.]\n [ 76. 526.]]\n\n [[163. 462.]\n [317. 462.]\n [317. 493.]\n -[163. 493.]]\n\n [[324. 431.]\n [414. 431.]\n [414. 452.]\n [324. 452.]]\n\n -[[ 76. 412.]\n [208. 408.]\n [209. 424.]\n [ 76. 428.]]\n\n [[307. 409.]\n -[428. 409.]\n [428. 426.]\n [307 . 426.]]\n\n [[ 74. 385.]\n [217. 382.]\n -[217. 400.]\n [ 74. 403.]]\n\n [[308. 381.]\n [427. 380.]\n [427. 400.]\n -[308. 401.]]\n\n [[ 74. 363.]\n [195. 362.]\n [195. 378.]\n [ 74. 379.]]\n\n -[[303. 359.]\n [423. 357.]\n [423. 375.]\n [303. 377.]]\n\n [[ 70. 336.]\n -[239. 334.]\n [239. 354.]\ n [ 70. 356.]]\n\n [[ 70. 312.]\n [204. 310.]\n -[204. 327.]\n [ 70. 330.]]\n\n [[303. 308.]\n [419. 306.]\n [419. 326.]\n -[303. 328.]]\n\n [[113. 2 72.]\n [246. 270.]\n [247. 299.]\n [113. 301.]]\n\n - [[361. 269.]\n [384. 269.]\n [384. 296.]\n [361. 296.]]\n\n [[ 70. 250.]\n - [243. 246.]\n [243. 265.]\n [ 70. 269.]]\n\n [[ 65. 221.]\n [187. 220.]\n -[187. 240.]\n [ 65. 241.]]\n\n [[337. 216.]\n [382. 216.]\n [382. 240.]\n -[337. 240.]]\n\n [ [ 65. 196.]\n [247. 193.]\n [247. 213.]\n [ 65. 216.]]\n\n -[[296. 197.]\n [423. 191.]\n [424. 209.]\n [296. 215.]]\n\n [[ 65. 167.]\n [244. 167.]\n -[244. 186.]\n [ 65. 186.]]\n\n [[ 67. 139.]\n [290. 139.]\n [290. 159.]\n [ 67. 159.]]\n\n -[[ 68. 113.]\n [410. 113.]\n [410. 128.]\n [ 68. 129.] ]\n\n [[277. 87.]\n [416. 87.]\n -[416. 108.]\n [277. 108.]]\n\n [[ 79. 28.]\n [132. 28.]\n [132. 62.]\n [ 79. 62.]]\n\n -[[163. 17.]\n [410. 14.]\n [410. 50.]\n [163. 53.]]]']} -``` +详细的预测结果会存在 test_tipc/output/{model_name}/serving_infer/python(cpp)/ 文件夹下 ## 3. 更多教程 diff --git a/test_tipc/docs/test_train_inference_python.md b/test_tipc/docs/test_train_inference_python.md index 99de9400..26361925 100644 --- a/test_tipc/docs/test_train_inference_python.md +++ b/test_tipc/docs/test_train_inference_python.md @@ -1,6 +1,6 @@ # Linux端基础训练预测功能测试 -Linux端基础训练预测功能测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。 +Linux端基础训练预测功能测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能,包括PACT在线量化。 - Mac端基础训练预测功能测试参考[链接](./mac_test_train_inference_python.md) - Windows端基础训练预测功能测试参考[链接](./win_test_train_inference_python.md) @@ -11,13 +11,14 @@ Linux端基础训练预测功能测试的主程序为`test_train_inference_pytho | 算法名称 | 模型名称 | 单机单卡 | 单机多卡 | 多机多卡 | 模型压缩(单机多卡) | | :---- | :---- | :---- | :---- | :---- | :---- | -| DB | ch_ppocr_mobile_v2.0_det| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化
离线量化(无需训练) | -| DB | ch_ppocr_server_v2.0_det| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化
离线量化(无需训练) | -| CRNN | ch_ppocr_mobile_v2.0_rec| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:PACT量化
离线量化(无需训练) | -| CRNN | ch_ppocr_server_v2.0_rec| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:PACT量化
离线量化(无需训练) | -|PP-OCR| ch_ppocr_mobile_v2.0| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | - | -|PP-OCR| ch_ppocr_server_v2.0| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | - | +| DB | ch_ppocr_mobile_v2_0_det| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化 | +| DB | ch_ppocr_server_v2_0_det| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化 | +| CRNN | ch_ppocr_mobile_v2_0_rec| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:PACT量化 | +| CRNN | ch_ppocr_server_v2_0_rec| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:PACT量化 | +|PP-OCR| ch_ppocr_mobile_v2_0| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | - | +|PP-OCR| ch_ppocr_server_v2_0| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | - | |PP-OCRv2| ch_PP-OCRv2 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | - | +|PP-OCRv3| ch_PP-OCRv3 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | - | - 预测相关:基于训练是否使用量化,可以将训练产出的模型可以分为`正常模型`和`量化模型`,这两类模型对应的预测功能汇总如下, @@ -35,7 +36,7 @@ Linux端基础训练预测功能测试的主程序为`test_train_inference_pytho 运行环境配置请参考[文档](./install.md)的内容配置TIPC的运行环境。 ### 2.1 安装依赖 -- 安装PaddlePaddle >= 2.0 +- 安装PaddlePaddle >= 2.3 - 安装PaddleOCR依赖 ``` pip3 install -r ../requirements.txt @@ -46,7 +47,7 @@ Linux端基础训练预测功能测试的主程序为`test_train_inference_pytho cd AutoLog pip3 install -r requirements.txt python3 setup.py bdist_wheel - pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl + pip3 install ./dist/auto_log-1.2.0-py3-none-any.whl cd ../ ``` - 安装PaddleSlim (可选) @@ -57,60 +58,57 @@ Linux端基础训练预测功能测试的主程序为`test_train_inference_pytho ### 2.2 功能测试 -先运行`prepare.sh`准备数据和模型,然后运行`test_train_inference_python.sh`进行测试,最终在```test_tipc/output```目录下生成`python_infer_*.log`格式的日志文件。 +#### 2.2.1 基础训练推理链条 +先运行`prepare.sh`准备数据和模型,然后运行`test_train_inference_python.sh`进行测试,最终在```test_tipc/output```目录下生成`,model_name/lite_train_lite_infer/*.log`格式的日志文件。 -`test_train_inference_python.sh`包含5种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是: +`test_train_inference_python.sh`包含基础链条的4种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是: - 模式1:lite_train_lite_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度; ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt 'lite_train_lite_infer' -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt 'lite_train_lite_infer' +bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_infer_python.txt 'lite_train_lite_infer' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_infer_python.txt 'lite_train_lite_infer' ``` - 模式2:lite_train_whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理; ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt 'lite_train_whole_infer' -bash test_tipc/test_train_inference_python.sh ../test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt 'lite_train_whole_infer' +bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_infer_python.txt 'lite_train_whole_infer' +bash test_tipc/test_train_inference_python.sh ../test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_infer_python.txt 'lite_train_whole_infer' ``` - 模式3:whole_infer,不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度; ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt 'whole_infer' +bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_infer_python.txt 'whole_infer' # 用法1: -bash test_tipc/test_train_inference_python.sh ../test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt 'whole_infer' +bash test_tipc/test_train_inference_python.sh ../test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_infer_python.txt 'whole_infer' # 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号 -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt 'whole_infer' '1' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_infer_python.txt 'whole_infer' '1' ``` - 模式4:whole_train_whole_infer,CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度; ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt 'whole_train_whole_infer' -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt 'whole_train_whole_infer' +bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_infer_python.txt 'whole_train_whole_infer' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_infer_python.txt 'whole_train_whole_infer' ``` -- 模式5:klquant_whole_infer,测试离线量化; -```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt 'klquant_whole_infer' -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt 'klquant_whole_infer' -``` - 运行相应指令后,在`test_tipc/output`文件夹下自动会保存运行日志。如'lite_train_lite_infer'模式下,会运行训练+inference的链条,因此,在`test_tipc/output`文件夹有以下文件: ``` -test_tipc/output/ +test_tipc/output/model_name/lite_train_lite_infer/ |- results_python.log # 运行指令状态的日志 -|- norm_train_gpus_0_autocast_null/ # GPU 0号卡上正常训练的训练日志和模型保存文件夹 -|- pact_train_gpus_0_autocast_null/ # GPU 0号卡上量化训练的训练日志和模型保存文件夹 +|- norm_train_gpus_0_autocast_null/ # GPU 0号卡上正常单机单卡训练的训练日志和模型保存文件夹 +|- norm_train_gpus_0,1_autocast_null/ # GPU 0,1号卡上正常单机多卡训练的训练日志和模型保存文件夹 ...... -|- python_infer_cpu_usemkldnn_True_threads_1_batchsize_1.log # CPU上开启Mkldnn线程数设置为1,测试batch_size=1条件下的预测运行日志 -|- python_infer_gpu_usetrt_True_precision_fp16_batchsize_1.log # GPU上开启TensorRT,测试batch_size=1的半精度预测日志 +|- python_infer_cpu_usemkldnn_False_threads_6_precision_fp32_batchsize_1.log # CPU上关闭Mkldnn线程数设置为6,测试batch_size=1条件下的fp32精度预测运行日志 +|- python_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log # GPU上关闭TensorRT,测试batch_size=1的fp32精度预测日志 ...... ``` 其中`results_python.log`中包含了每条指令的运行状态,如果运行成功会输出: ``` -Run successfully with command - python3.7 tools/train.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained Global.use_gpu=True Global.save_model_dir=./tests/output/norm_train_gpus_0_autocast_null Global.epoch_num=1 Train.loader.batch_size_per_card=2 ! -Run successfully with command - python3.7 tools/export_model.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./tests/output/norm_train_gpus_0_autocast_null/latest Global.save_inference_dir=./tests/output/norm_train_gpus_0_autocast_null! +[33m Run successfully with command - ch_ppocr_mobile_v2_0_det - python3.7 tools/train.py -c configs/det/ch_ppocr_v2_0/ch_det_mv3_db_v2_0.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained Global.use_gpu=True Global.save_model_dir=./test_tipc/output/ch_ppocr_mobile_v2_0_det/lite_train_lite_infer/norm_train_gpus_0_autocast_null Global.epoch_num=100 Train.loader.batch_size_per_card=2 !  + Run successfully with command - ch_ppocr_mobile_v2_0_det - python3.7 tools/export_model.py -c configs/det/ch_ppocr_v2_0/ch_det_mv3_db_v2_0.yml -o Global.checkpoints=./test_tipc/output/ch_ppocr_mobile_v2_0_det/lite_train_lite_infer/norm_train_gpus_0_autocast_null/latest Global.save_inference_dir=./test_tipc/output/ch_ppocr_mobile_v2_0_det/lite_train_lite_infer/norm_train_gpus_0_autocast_null > ./test_tipc/output/ch_ppocr_mobile_v2_0_det/lite_train_lite_infer/norm_train_gpus_0_autocast_null_nodes_1_export.log 2>&1 !  + Run successfully with command - ch_ppocr_mobile_v2_0_det - python3.7 tools/infer/predict_det.py --use_gpu=True --use_tensorrt=False --precision=fp32 --det_model_dir=./test_tipc/output/ch_ppocr_mobile_v2_0_det/lite_train_lite_infer/norm_train_gpus_0_autocast_null --rec_batch_num=1 --image_dir=./train_data/icdar2015/text_localization/ch4_test_images/ --benchmark=True > ./test_tipc/output/ch_ppocr_mobile_v2_0_det/lite_train_lite_infer/python_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log 2>&1 !  + Run successfully with command - ch_ppocr_mobile_v2_0_det - python3.7 tools/infer/predict_det.py --use_gpu=False --enable_mkldnn=False --cpu_threads=6 --det_model_dir=./test_tipc/output/ch_ppocr_mobile_v2_0_det/lite_train_lite_infer/norm_train_gpus_0_autocast_null --rec_batch_num=1 --image_dir=./train_data/icdar2015/text_localization/ch4_test_images/ --benchmark=True --precision=fp32 > ./test_tipc/output/ch_ppocr_mobile_v2_0_det/lite_train_lite_infer/python_infer_cpu_usemkldnn_False_threads_6_precision_fp32_batchsize_1.log 2>&1 !  ...... ``` 如果运行失败,会输出: @@ -121,6 +119,22 @@ Run failed with command - python3.7 tools/export_model.py -c tests/configs/det_m ``` 可以很方便的根据`results_python.log`中的内容判定哪一个指令运行错误。 +#### 2.2.2 PACT在线量化链条 +此外,`test_train_inference_python.sh`还包含PACT在线量化模式,命令如下: +以ch_PP-OCRv2_det为例,如需测试其他模型更换配置即可。 + +```shell +bash test_tipc/prepare.sh ./test_tipc/configs/ch_PP-OCRv2_det/train_pact_infer_python.txt 'lite_train_lite_infer' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_PP-OCRv2_det/train_pact_infer_python.txt 'lite_train_lite_infer' +``` +#### 2.2.3 混合精度训练链条 +此外,`test_train_inference_python.sh`还包含混合精度训练模式,命令如下: +以ch_PP-OCRv2_det为例,如需测试其他模型更换配置即可。 + +```shell +bash test_tipc/prepare.sh ./test_tipc/configs/ch_PP-OCRv2_det/train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt 'lite_train_lite_infer' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_PP-OCRv2_det/train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt 'lite_train_lite_infer' +``` ### 2.3 精度测试 diff --git a/test_tipc/docs/win_test_train_inference_python.md b/test_tipc/docs/win_test_train_inference_python.md index 6e3ce93b..ba9aa213 100644 --- a/test_tipc/docs/win_test_train_inference_python.md +++ b/test_tipc/docs/win_test_train_inference_python.md @@ -8,7 +8,7 @@ Windows端基础训练预测功能测试的主程序为`test_train_inference_pyt | 算法名称 | 模型名称 | 单机单卡 | 单机多卡 | 多机多卡 | 模型压缩(单机多卡) | | :---- | :---- | :---- | :---- | :---- | :---- | -| DB | ch_ppocr_mobile_v2.0_det| 正常训练
混合精度 | - | - | 正常训练:FPGM裁剪、PACT量化
离线量化(无需训练) | +| DB | ch_ppocr_mobile_v2_0_det| 正常训练
混合精度 | - | - | 正常训练:FPGM裁剪、PACT量化 | - 预测相关:基于训练是否使用量化,可以将训练产出的模型可以分为`正常模型`和`量化模型`,这两类模型对应的预测功能汇总如下: @@ -29,7 +29,7 @@ Windows端基础训练预测功能测试的主程序为`test_train_inference_pyt ### 2.1 安装依赖 -- 安装PaddlePaddle >= 2.0 +- 安装PaddlePaddle >= 2.3 - 安装PaddleOCR依赖 ``` pip install -r ../requirements.txt @@ -40,7 +40,7 @@ Windows端基础训练预测功能测试的主程序为`test_train_inference_pyt cd AutoLog pip install -r requirements.txt python setup.py bdist_wheel - pip install ./dist/auto_log-1.0.0-py3-none-any.whl + pip install ./dist/auto_log-1.2.0-py3-none-any.whl cd ../ ``` - 安装PaddleSlim (可选) @@ -51,54 +51,46 @@ Windows端基础训练预测功能测试的主程序为`test_train_inference_pyt ### 2.2 功能测试 -先运行`prepare.sh`准备数据和模型,然后运行`test_train_inference_python.sh`进行测试,最终在```test_tipc/output```目录下生成`python_infer_*.log`格式的日志文件。 +先运行`prepare.sh`准备数据和模型,然后运行`test_train_inference_python.sh`进行测试,最终在```test_tipc/output```目录下生成`,model_name/lite_train_lite_infer/*.log`格式的日志文件。 -`test_train_inference_python.sh`包含5种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是: +`test_train_inference_python.sh`包含基础链条的4种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是: - 模式1:lite_train_lite_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度; ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'lite_train_lite_infer' -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'lite_train_lite_infer' +bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'lite_train_lite_infer' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'lite_train_lite_infer' ``` - 模式2:lite_train_whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理; ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'lite_train_whole_infer' -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'lite_train_whole_infer' +bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'lite_train_whole_infer' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'lite_train_whole_infer' ``` - 模式3:whole_infer,不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度; ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'whole_infer' +bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'whole_infer' # 用法1: -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'whole_infer' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'whole_infer' # 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号 -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'whole_infer' '1' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'whole_infer' '1' ``` - 模式4:whole_train_whole_infer,CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度; ```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'whole_train_whole_infer' -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'whole_train_whole_infer' +bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'whole_train_whole_infer' +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2_0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt 'whole_train_whole_infer' ``` -- 模式5:klquant_whole_infer,测试离线量化; -```shell -bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det_KL/model_linux_gpu_normal_normal_infer_python_windows_gpu_cpu.txt 'klquant_whole_infer' -bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det_KL/model_linux_gpu_normal_normal_infer_python_windows_gpu_cpu.txt 'klquant_whole_infer' -``` - - 运行相应指令后,在`test_tipc/output`文件夹下自动会保存运行日志。如'lite_train_lite_infer'模式下,会运行训练+inference的链条,因此,在`test_tipc/output`文件夹有以下文件: ``` -test_tipc/output/ +test_tipc/output/model_name/lite_train_lite_infer/ |- results_python.log # 运行指令状态的日志 |- norm_train_gpus_0_autocast_null/ # GPU 0号卡上正常训练的训练日志和模型保存文件夹 -|- pact_train_gpus_0_autocast_null/ # GPU 0号卡上量化训练的训练日志和模型保存文件夹 ...... -|- python_infer_cpu_usemkldnn_True_threads_1_batchsize_1.log # CPU上开启Mkldnn线程数设置为1,测试batch_size=1条件下的预测运行日志 -|- python_infer_gpu_usetrt_True_precision_fp16_batchsize_1.log # GPU上开启TensorRT,测试batch_size=1的半精度预测日志 +|- python_infer_cpu_usemkldnn_False_threads_6_precision_fp32_batchsize_1.log # CPU上关闭Mkldnn线程数设置为6,测试batch_size=1条件下的fp32精度预测运行日志 +|- python_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log # GPU上关闭TensorRT,测试batch_size=1的fp32精度预测日志 ...... ``` -- GitLab