diff --git a/configs/table/SLANet.yml b/configs/table/SLANet.yml index ee2584d52d4a2d81d5b9c4aaad61b748f5b90d66..46cc22d0a6205d191eeddf682ef7f6614c346402 100644 --- a/configs/table/SLANet.yml +++ b/configs/table/SLANet.yml @@ -9,7 +9,7 @@ Global: eval_batch_step: [0, 1000] cal_metric_during_train: True pretrained_model: - checkpoints: /ssd1/zhoujun20/table/ch/PaddleOCR/output/en/table_lcnet_1_0_csp_pan_headsv3_smooth_l1_pretrain_ssld_weight81_sync_bn/best_accuracy.pdparams + checkpoints: save_inference_dir: ./output/SLANet/infer use_visualdl: False infer_img: doc/table/table.jpg @@ -28,11 +28,7 @@ Optimizer: beta2: 0.999 clip_norm: 5.0 lr: - # name: Piecewise learning_rate: 0.001 - # decay_epochs : [10, 20] - # values : [0.002, 0.0002, 0.0001] - # warmup_epoch: 0 regularizer: name: 'L2' factor: 0.00000 @@ -73,8 +69,8 @@ Metric: Train: dataset: name: PubTabDataSet - data_dir: /home/zhoujun20/table/PubTabNe/pubtabnet/train/ - label_file_list: [/home/zhoujun20/table/PubTabNe/pubtabnet/PubTabNet_2.0.0_train.jsonl] + data_dir: train_data/table/pubtabnet/train/ + label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_train.jsonl] transforms: - DecodeImage: # load image img_mode: BGR @@ -109,7 +105,7 @@ Eval: dataset: name: PubTabDataSet data_dir: /home/zhoujun20/table/PubTabNe/pubtabnet/val/ - label_file_list: [/home/zhoujun20/table/PubTabNe/pubtabnet/PubTabNet_2.0.0_val.jsonl] + label_file_list: [/home/zhoujun20/table/PubTabNe/pubtabnet/val_500.jsonl] transforms: - DecodeImage: # load image img_mode: BGR