diff --git a/applications/README.md b/applications/README.md
index eba1e205dc13dd226066784659bdb6f353e776ca..017c2a9f6f696904e9bf2f1180104e66c90ee712 100644
--- a/applications/README.md
+++ b/applications/README.md
@@ -1,41 +1,78 @@
+[English](README_en.md) | 简体中文
+
# 场景应用
PaddleOCR场景应用覆盖通用,制造、金融、交通行业的主要OCR垂类应用,在PP-OCR、PP-Structure的通用能力基础之上,以notebook的形式展示利用场景数据微调、模型优化方法、数据增广等内容,为开发者快速落地OCR应用提供示范与启发。
-> 如需下载全部垂类模型,可以扫描下方二维码,关注公众号填写问卷后,加入PaddleOCR官方交流群获取20G OCR学习大礼包(内含《动手学OCR》电子书、课程回放视频、前沿论文等重磅资料)
+- [教程文档](#1)
+ - [通用](#11)
+ - [制造](#12)
+ - [金融](#13)
+ - [交通](#14)
-
diff --git a/doc/doc_en/PP-OCRv3_introduction_en.md b/doc/doc_en/PP-OCRv3_introduction_en.md
index 481e0b8174b1e5ebce84eb1745c49dccd2c565f5..815ad9b0e5a7ff2dec36ceaef995212d122a9f89 100644
--- a/doc/doc_en/PP-OCRv3_introduction_en.md
+++ b/doc/doc_en/PP-OCRv3_introduction_en.md
@@ -55,10 +55,11 @@ The ablation experiments are as follows:
|ID|Strategy|Model Size|Hmean|The Inference Time(cpu + mkldnn)|
|-|-|-|-|-|
-|baseline teacher|DB-R50|99M|83.5%|260ms|
+|baseline teacher|PP-OCR server|49M|83.2%|171ms|
|teacher1|DB-R50-LK-PAN|124M|85.0%|396ms|
|teacher2|DB-R50-LK-PAN-DML|124M|86.0%|396ms|
|baseline student|PP-OCRv2|3M|83.2%|117ms|
+|student0|DB-MV3-RSE-FPN|3.6M|84.5%|124ms|
|student1|DB-MV3-CML(teacher2)|3M|84.3%|117ms|
|student2|DB-MV3-RSE-FPN-CML(teacher2)|3.6M|85.4%|124ms|
@@ -199,7 +200,7 @@ UDML (Unified-Deep Mutual Learning) is a strategy proposed in PP-OCRv2 which is
**(6)UIM:Unlabeled Images Mining**
-UIM (Unlabeled Images Mining) is a very simple unlabeled data mining strategy. The main idea is to use a high-precision text recognition model to predict unlabeled images to obtain pseudo-labels, and select samples with high prediction confidence as training data for training lightweight models. Using this strategy, the accuracy of the recognition model is further improved to 79.4% (+1%).
+UIM (Unlabeled Images Mining) is a very simple unlabeled data mining strategy. The main idea is to use a high-precision text recognition model to predict unlabeled images to obtain pseudo-labels, and select samples with high prediction confidence as training data for training lightweight models. Using this strategy, the accuracy of the recognition model is further improved to 79.4% (+1%). In practice, we use the full data set to train the high-precision SVTR_Tiny model (acc=82.5%) for data mining. [SVTR_Tiny model download and tutorial](../../applications/高精度中文识别模型.md).