diff --git a/README_ch.md b/README_ch.md
index fa9c89e1ee67ff4e5bf808f3942a87dc0204dd7d..df1c50ff85f0e2210ecf913f4545b95099150022 100755
--- a/README_ch.md
+++ b/README_ch.md
@@ -75,12 +75,15 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
| ------- | ------- | ------- | -------- | --------- | -------- |
| | | | | | |
+更多模型下载(包括多语言),可以参考[PP-Structure 系列模型下载](./doc/ppstructure/models_list.md)
+
## 文档教程
- [运行环境准备](./doc/doc_ch/environment.md)
- [快速开始(中英文/多语言/文档分析)](./doc/doc_ch/quickstart.md)
- [PP-OCR文本检测识别🔥](./doc/doc_ch/ppocr_introduction.md)
+ - [快速开始](./doc/doc_ch/quickstart.md)
- [模型库](./doc/doc_ch/models_list.md)
- [模型训练](./doc/doc_ch/training.md)
- [文本检测](./doc/doc_ch/detection.md)
@@ -98,14 +101,16 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
- [Paddle2ONNX模型转化与预测](./deploy/paddle2onnx/readme.md)
- [Benchmark](./doc/doc_ch/benchmark.md)
- [PP-Structure文档分析🔥](./ppstructure/README_ch.md)
- - [模型库](./doc/doc_ch/models_list_structrure.md)
+ - [快速开始](./doc/ppstructure/quickstart.md)
+ - [模型库](./doc/ppstructure/models_list.md)
- [模型训练](./doc/doc_ch/training.md)
- [版面分析](./ppstructure/layout/README_ch.md)
- [表格识别](./ppstructure/table/README_ch.md)
- - [关键信息提取](./ppstructure/docs/kie.md)
+ - [关键信息提取](./doc/ppstructure/kie.md)
- [DocVQA](./ppstructure/docs/kie.md)
- [推理部署](./deploy/readme_ch.md)
- [基于Python预测引擎推理](./doc/doc_ch/inference_ppstructure.md)
+ - [基于C++预测引擎推理](./doc/doc_ch/inference_ppstructure.md)
- [服务化部署](./deploy/pdserving/README_CN.md)
- [前沿算法与模型🚀](./doc/doc_ch/algorithm.md)
- [文本检测算法](./doc/doc_ch/algorithm_overview.md#11-%E6%96%87%E6%9C%AC%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95)
diff --git a/doc/doc_ch/quickstart.md b/doc/doc_ch/quickstart.md
index 64b5ad39601706c2f99efb948c107a228e6625ee..f41e44bd138d2b434ebcba5e197501e3367811b6 100644
--- a/doc/doc_ch/quickstart.md
+++ b/doc/doc_ch/quickstart.md
@@ -1,4 +1,4 @@
-# PaddleOCR快速开始
+# PaddleOCR 快速开始
- [1. 安装](#1)
- [1.1 安装PaddlePaddle](#11)
@@ -45,15 +45,7 @@
pip install "paddleocr>=2.0.1" # 推荐使用2.0.1+版本
```
-- 对于Windows环境用户:
-
- 直接通过pip安装的shapely库可能出现`[winRrror 126] 找不到指定模块的问题`。建议从[这里](https://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely)下载shapely安装包完成安装,
-
-- 使用**版面分析**功能时,运行以下命令**安装 Layout-Parser**
-
- ```bash
- pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
- ```
+- 对于Windows环境用户:直接通过pip安装的shapely库可能出现`[winRrror 126] 找不到指定模块的问题`。建议从[这里](https://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely)下载shapely安装包完成安装。
@@ -155,57 +147,7 @@ paddleocr --image_dir ./imgs_en/254.jpg --lang=en
全部语种及其对应的缩写列表可查看[多语言模型教程](./multi_languages.md)
-#### 2.1.3 版面分析
-
-版面分析是指对文档图片中的文字、标题、列表、图片和表格5类区域进行划分。对于前三类区域,直接使用OCR模型完成对应区域文字检测与识别,并将结果保存在txt中。对于表格类区域,经过表格结构化处理后,表格图片转换为相同表格样式的Excel文件。图片区域会被单独裁剪成图像。
-
-使用PaddleOCR的版面分析功能,需要指定`--type=structure`
-
-```bash
-paddleocr --image_dir=./table/1.png --type=structure
-```
-
-- **返回结果说明**
-
- PP-Structure的返回结果为一个dict组成的list,示例如下
-
- ```shell
- [{ 'type': 'Text',
- 'bbox': [34, 432, 345, 462],
- 'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
- [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent ', 0.465441)])
- }
- ]
- ```
-
- 其中各个字段说明如下
-
- | 字段 | 说明 |
- | ---- | ------------------------------------------------------------ |
- | type | 图片区域的类型 |
- | bbox | 图片区域的在原图的坐标,分别[左上角x,左上角y,右下角x,右下角y] |
- | res | 图片区域的OCR或表格识别结果。
表格: 表格的HTML字符串;
OCR: 一个包含各个单行文字的检测坐标和识别结果的元组 |
-
- 运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名为表格在图片里的坐标。
-
- ```
- /output/table/1/
- └─ res.txt
- └─ [454, 360, 824, 658].xlsx 表格识别结果
- └─ [16, 2, 828, 305].jpg 被裁剪出的图片区域
- └─ [17, 361, 404, 711].xlsx 表格识别结果
- ```
-
-- **参数说明**
-
- | 字段 | 说明 | 默认值 |
- | --------------- | ---------------------------------------- | -------------------------------------------- |
- | output | excel和识别结果保存的地址 | ./output/table |
- | table_max_len | 表格结构模型预测时,图像的长边resize尺度 | 488 |
- | table_model_dir | 表格结构模型 inference 模型地址 | None |
- | table_char_type | 表格结构模型所用字典地址 | ../ppocr/utils/dict/table_structure_dict.txt |
- 大部分参数和paddleocr whl包保持一致,见 [whl包文档](./whl.md)
@@ -291,4 +233,4 @@ im_show.save('result.jpg')
通过本节内容,相信您已经熟练掌握PaddleOCR whl包的使用方法并获得了初步效果。
-PaddleOCR是一套丰富领先实用的OCR工具库,打通数据、模型训练、压缩和推理部署全流程,因此在[下一节](./paddleOCR_overview.md)中我们将首先为您介绍PaddleOCR的全景图,然后克隆PaddleOCR项目,正式开启PaddleOCR的应用之旅。
+PaddleOCR是一套丰富领先实用的OCR工具库,打通数据、模型训练、压缩和推理部署全流程,您可以参考[文档教程](../../README_ch.md#文档教程),正式开启PaddleOCR的应用之旅。
diff --git a/ppstructure/docs/imgs/0.png b/doc/ppstructure/imgs/0.png
similarity index 100%
rename from ppstructure/docs/imgs/0.png
rename to doc/ppstructure/imgs/0.png
diff --git a/doc/ppstructure/inference.md b/doc/ppstructure/inference.md
new file mode 100644
index 0000000000000000000000000000000000000000..bfcdbd0c07da6e3a9168c3b7464183ac5dfba536
--- /dev/null
+++ b/doc/ppstructure/inference.md
@@ -0,0 +1,50 @@
+# 基于Python预测引擎推理
+
+- [版面分析+表格识别](#1)
+- [DocVQA](#2)
+
+
+## 1. 版面分析+表格识别
+
+```bash
+cd ppstructure
+
+# 下载模型
+mkdir inference && cd inference
+# 下载PP-OCRv2文本检测模型并解压
+wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar && tar xf ch_PP-OCRv2_det_slim_quant_infer.tar
+# 下载PP-OCRv2文本识别模型并解压
+wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar && tar xf ch_PP-OCRv2_rec_slim_quant_infer.tar
+# 下载超轻量级英文表格预测模型并解压
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
+cd ..
+
+python3 predict_system.py --det_model_dir=inference/ch_PP-OCRv2_det_slim_quant_infer \
+ --rec_model_dir=inference/ch_PP-OCRv2_rec_slim_quant_infer \
+ --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer \
+ --image_dir=../doc/table/1.png \
+ --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \
+ --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt \
+ --output=../output/table \
+ --vis_font_path=../doc/fonts/simfang.ttf
+```
+运行完成后,每张图片会在`output`字段指定的目录下的`talbe`目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
+
+
+## 2. DocVQA
+
+```bash
+cd ppstructure
+
+# 下载模型
+mkdir inference && cd inference
+# 下载SER xfun 模型并解压
+wget https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar && tar xf PP-Layout_v1.0_ser_pretrained.tar
+cd ..
+
+python3 predict_system.py --model_name_or_path=vqa/PP-Layout_v1.0_ser_pretrained/ \
+ --mode=vqa \
+ --image_dir=vqa/images/input/zh_val_0.jpg \
+ --vis_font_path=../doc/fonts/simfang.ttf
+```
+运行完成后,每张图片会在`output`字段指定的目录下的`vqa`目录下存放可视化之后的图片,图片名和输入图片名一致。
\ No newline at end of file
diff --git a/ppstructure/docs/installation.md b/doc/ppstructure/installation.md
similarity index 100%
rename from ppstructure/docs/installation.md
rename to doc/ppstructure/installation.md
diff --git a/ppstructure/docs/kie.md b/doc/ppstructure/kie.md
similarity index 100%
rename from ppstructure/docs/kie.md
rename to doc/ppstructure/kie.md
diff --git a/ppstructure/docs/kie_en.md b/doc/ppstructure/kie_en.md
similarity index 100%
rename from ppstructure/docs/kie_en.md
rename to doc/ppstructure/kie_en.md
diff --git a/ppstructure/docs/models_list.md b/doc/ppstructure/models_list.md
similarity index 91%
rename from ppstructure/docs/models_list.md
rename to doc/ppstructure/models_list.md
index 5de7394d7e4e250f74471bbbb2fa89f779b70516..c7dab999ff6e370c56c5495e22e91f117b3d1275 100644
--- a/ppstructure/docs/models_list.md
+++ b/doc/ppstructure/models_list.md
@@ -1,15 +1,15 @@
-- [PP-Structure 系列模型列表](#pp-structure-系列模型列表)
- - [1. LayoutParser 模型](#1-layoutparser-模型)
- - [2. OCR和表格识别模型](#2-ocr和表格识别模型)
- - [2.1 OCR](#21-ocr)
- - [2.2 表格识别模型](#22-表格识别模型)
- - [3. VQA模型](#3-vqa模型)
- - [4. KIE模型](#4-kie模型)
-
# PP-Structure 系列模型列表
+- [1. 版面分析模型](#1)
+- [2. OCR和表格识别模型](#2)
+ - [2.1 OCR](#21)
+ - [2.2 表格识别模型](#22)
+- [3. VQA模型](#3)
+- [4. KIE模型](#4)
+
-## 1. LayoutParser 模型
+
+## 1. 版面分析模型
|模型名称|模型简介|下载地址|label_map|
| --- | --- | --- | --- |
@@ -17,8 +17,10 @@
| ppyolov2_r50vd_dcn_365e_tableBank_word | TableBank Word 数据集训练的版面分析模型,只能检测表格 | [推理模型](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_word.tar) | {0:"Table"}|
| ppyolov2_r50vd_dcn_365e_tableBank_latex | TableBank Latex 数据集训练的版面分析模型,只能检测表格 | [推理模型](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_latex.tar) | {0:"Table"}|
+
## 2. OCR和表格识别模型
+
### 2.1 OCR
|模型名称|模型简介|推理模型大小|下载地址|
@@ -28,12 +30,14 @@
如需要使用其他OCR模型,可以在 [PP-OCR model_list](../../doc/doc_ch/models_list.md) 下载模型或者使用自己训练好的模型配置到 `det_model_dir`, `rec_model_dir`两个字段即可。
+
### 2.2 表格识别模型
|模型名称|模型简介|推理模型大小|下载地址|
| --- | --- | --- | --- |
|en_ppocr_mobile_v2.0_table_structure|PubLayNet数据集训练的英文表格场景的表格结构预测|18.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) |
+
## 3. VQA模型
|模型名称|模型简介|推理模型大小|下载地址|
@@ -44,6 +48,7 @@
|re_LayoutLMv2_xfun_zh|基于LayoutLMv2在xfun中文数据集上训练的RE模型|765M|[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutLMv2_xfun_zh.tar) |
|ser_LayoutLM_xfun_zh|基于LayoutLM在xfun中文数据集上训练的SER模型|430M|[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh.tar) |
+
## 4. KIE模型
|模型名称|模型简介|模型大小|下载地址|
diff --git a/ppstructure/docs/quickstart.md b/doc/ppstructure/quickstart.md
similarity index 55%
rename from ppstructure/docs/quickstart.md
rename to doc/ppstructure/quickstart.md
index 52e0c77dd1d9716827e06819cc957e36f02ee1f8..331c96a19c88d165acfa902bfb89df4649c5300c 100644
--- a/ppstructure/docs/quickstart.md
+++ b/doc/ppstructure/quickstart.md
@@ -1,43 +1,55 @@
# PP-Structure 快速开始
-- [PP-Structure 快速开始](#pp-structure-快速开始)
- - [1. 安装依赖包](#1-安装依赖包)
- - [2. 便捷使用](#2-便捷使用)
- - [2.1 命令行使用](#21-命令行使用)
- - [2.2 Python脚本使用](#22-python脚本使用)
- - [2.3 返回结果说明](#23-返回结果说明)
- - [2.4 参数说明](#24-参数说明)
- - [3. Python脚本使用](#3-python脚本使用)
-
+- [1. 安装依赖包](#1)
+- [2. 便捷使用](#2)
+ - [2.1 命令行使用](#21)
+ - [2.1.1 版面分析+表格识别](#211)
+ - [2.1.2 DocVQA](#212)
+ - [2.2 Python脚本使用](#22)
+ - [2.2.1 版面分析+表格识别](#221)
+ - [2.2.2 DocVQA](#222)
+ - [2.3 返回结果说明](#23)
+ - [2.3.1 版面分析+表格识别](#231)
+ - [2.3.2 DocVQA](#232)
+ - [2.4 参数说明](#24)
+
+
+
## 1. 安装依赖包
```bash
-pip install "paddleocr>=2.3.0.2" # 推荐使用2.3.0.2+版本
-pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
-
-# 安装 PaddleNLP
-git clone https://github.com/PaddlePaddle/PaddleNLP -b develop
-cd PaddleNLP
-pip3 install -e .
+# 安装 paddleocr,推荐使用2.3.0.2+版本
+pip3 install "paddleocr>=2.3.0.2"
+# 安装 版面分析依赖包layoutparser(如不需要版面分析功能,可跳过)
+pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
+# 安装 DocVQA依赖包paddlenlp(如不需要DocVQA功能,可跳过)
+pip install paddlenlp
```
+
## 2. 便捷使用
-### 2.1 命令行使用
-
-* 版面分析+表格识别
+
+### 2.1 命令行使用
+
+
+#### 2.1.1 版面分析+表格识别
```bash
paddleocr --image_dir=../doc/table/1.png --type=structure
```
-* VQA
+
+#### 2.1.2 DocVQA
请参考:[文档视觉问答](../vqa/README.md)。
+
### 2.2 Python脚本使用
-* 版面分析+表格识别
+
+#### 2.2.1 版面分析+表格识别
+
```python
import os
import cv2
@@ -64,14 +76,17 @@ im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
-* VQA
+
+#### 2.2.2 DocVQA
请参考:[文档视觉问答](../vqa/README.md)。
+
### 2.3 返回结果说明
PP-Structure的返回结果为一个dict组成的list,示例如下
-* 版面分析+表格识别
+
+#### 2.3.1 版面分析+表格识别
```shell
[
{ 'type': 'Text',
@@ -89,7 +104,18 @@ dict 里各个字段说明如下
|bbox|图片区域的在原图的坐标,分别[左上角x,左上角y,右下角x,右下角y]|
|res|图片区域的OCR或表格识别结果。
表格: 表格的HTML字符串;
OCR: 一个包含各个单行文字的检测坐标和识别结果的元组|
-* VQA
+运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名为表格在图片里的坐标。
+
+ ```
+ /output/table/1/
+ └─ res.txt
+ └─ [454, 360, 824, 658].xlsx 表格识别结果
+ └─ [16, 2, 828, 305].jpg 被裁剪出的图片区域
+ └─ [17, 361, 404, 711].xlsx 表格识别结果
+ ```
+
+
+#### 2.3.2 DocVQA
请参考:[文档视觉问答](../vqa/README.md)。
@@ -109,51 +135,3 @@ dict 里各个字段说明如下
| mode | pipeline预测模式,structure: 版面分析+表格识别; VQA: SER文档信息抽取 | structure |
大部分参数和PaddleOCR whl包保持一致,见 [whl包文档](../../doc/doc_ch/whl.md)
-
-运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
-
-## 3. Python脚本使用
-
-* 版面分析+表格识别
-
-```bash
-cd ppstructure
-
-# 下载模型
-mkdir inference && cd inference
-# 下载PP-OCRv2文本检测模型并解压
-wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar && tar xf ch_PP-OCRv2_det_slim_quant_infer.tar
-# 下载PP-OCRv2文本识别模型并解压
-wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar && tar xf ch_PP-OCRv2_rec_slim_quant_infer.tar
-# 下载超轻量级英文表格预测模型并解压
-wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
-cd ..
-
-python3 predict_system.py --det_model_dir=inference/ch_PP-OCRv2_det_slim_quant_infer \
- --rec_model_dir=inference/ch_PP-OCRv2_rec_slim_quant_infer \
- --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer \
- --image_dir=../doc/table/1.png \
- --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \
- --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt \
- --output=../output/table \
- --vis_font_path=../doc/fonts/simfang.ttf
-```
-运行完成后,每张图片会在`output`字段指定的目录下的`talbe`目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
-
-* VQA
-
-```bash
-cd ppstructure
-
-# 下载模型
-mkdir inference && cd inference
-# 下载SER xfun 模型并解压
-wget https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar && tar xf PP-Layout_v1.0_ser_pretrained.tar
-cd ..
-
-python3 predict_system.py --model_name_or_path=vqa/PP-Layout_v1.0_ser_pretrained/ \
- --mode=vqa \
- --image_dir=vqa/images/input/zh_val_0.jpg \
- --vis_font_path=../doc/fonts/simfang.ttf
-```
-运行完成后,每张图片会在`output`字段指定的目录下的`vqa`目录下存放可视化之后的图片,图片名和输入图片名一致。