提交 7831f18b 编写于 作者: littletomatodonkey's avatar littletomatodonkey

fix recognition.md

上级 d7080099
...@@ -20,9 +20,10 @@ ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset ...@@ -20,9 +20,10 @@ ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
如果希望复现SRN的论文指标,需要下载离线[增广数据](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA),提取码: y3ry。增广数据是由MJSynth和SynthText做旋转和扰动得到的。数据下载完成后请解压到 {your_path}/PaddleOCR/train_data/data_lmdb_release/training/ 路径下。 如果希望复现SRN的论文指标,需要下载离线[增广数据](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA),提取码: y3ry。增广数据是由MJSynth和SynthText做旋转和扰动得到的。数据下载完成后请解压到 {your_path}/PaddleOCR/train_data/data_lmdb_release/training/ 路径下。
* 使用自己数据集 * 使用自己数据集
若您希望使用自己的数据进行训练,请参考下文组织您的数据。 若您希望使用自己的数据进行训练,请参考下文组织您的数据。
- 训练集 - 训练集
首先请将训练图片放入同一个文件夹(train_images),并用一个txt文件(rec_gt_train.txt)记录图片路径和标签。 首先请将训练图片放入同一个文件夹(train_images),并用一个txt文件(rec_gt_train.txt)记录图片路径和标签。
...@@ -131,8 +132,6 @@ tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar ...@@ -131,8 +132,6 @@ tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar
*如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false* *如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false*
``` ```
# 设置PYTHONPATH路径
export PYTHONPATH=$PYTHONPATH:.
# GPU训练 支持单卡,多卡训练,通过CUDA_VISIBLE_DEVICES指定卡号 # GPU训练 支持单卡,多卡训练,通过CUDA_VISIBLE_DEVICES指定卡号
export CUDA_VISIBLE_DEVICES=0,1,2,3 export CUDA_VISIBLE_DEVICES=0,1,2,3
# 训练icdar15英文数据 并将训练日志保存为 tain_rec.log # 训练icdar15英文数据 并将训练日志保存为 tain_rec.log
...@@ -160,7 +159,10 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t ...@@ -160,7 +159,10 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t
| 配置文件 | 算法名称 | backbone | trans | seq | pred | | 配置文件 | 算法名称 | backbone | trans | seq | pred |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | | :--------: | :-------: | :-------: | :-------: | :-----: | :-----: |
| [rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml) | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc |
| [rec_chinese_common_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_common_train_v1.1.yml) | CRNN | ResNet34_vd | None | BiLSTM | ctc |
| rec_chinese_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | | rec_chinese_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc |
| rec_chinese_common_train.yml | CRNN | ResNet34_vd | None | BiLSTM | ctc |
| rec_icdar15_train.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc | | rec_icdar15_train.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc |
| rec_mv3_none_bilstm_ctc.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc | | rec_mv3_none_bilstm_ctc.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc |
| rec_mv3_none_none_ctc.yml | Rosetta | Mobilenet_v3 large 0.5 | None | None | ctc | | rec_mv3_none_none_ctc.yml | Rosetta | Mobilenet_v3 large 0.5 | None | None | ctc |
...@@ -172,7 +174,7 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t ...@@ -172,7 +174,7 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t
| rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc | | rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc |
| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn | | rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
训练中文数据,推荐使用`rec_chinese_lite_train.yml`,如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件: 训练中文数据,推荐使用[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件:
`rec_mv3_none_none_ctc.yml` 为例: `rec_mv3_none_none_ctc.yml` 为例:
``` ```
...@@ -258,12 +260,12 @@ infer_img: doc/imgs_words/en/word_1.png ...@@ -258,12 +260,12 @@ infer_img: doc/imgs_words/en/word_1.png
word : joint word : joint
``` ```
预测使用的配置文件必须与训练一致,如您通过 `python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml` 完成了中文模型的训练, 预测使用的配置文件必须与训练一致,如您通过 `python3 tools/train.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml` 完成了中文模型的训练,
您可以使用如下命令进行中文模型预测。 您可以使用如下命令进行中文模型预测。
``` ```
# 预测中文结果 # 预测中文结果
python3 tools/infer_rec.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/ch/word_1.jpg python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/ch/word_1.jpg
``` ```
预测图片: 预测图片:
......
...@@ -126,8 +126,6 @@ tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar ...@@ -126,8 +126,6 @@ tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar
Start training: Start training:
``` ```
# Set PYTHONPATH path
export PYTHONPATH=$PYTHONPATH:.
# GPU training Support single card and multi-card training, specify the card number through CUDA_VISIBLE_DEVICES # GPU training Support single card and multi-card training, specify the card number through CUDA_VISIBLE_DEVICES
export CUDA_VISIBLE_DEVICES=0,1,2,3 export CUDA_VISIBLE_DEVICES=0,1,2,3
# Training icdar15 English data and saving the log as train_rec.log # Training icdar15 English data and saving the log as train_rec.log
...@@ -154,7 +152,10 @@ If the evaluation set is large, the test will be time-consuming. It is recommend ...@@ -154,7 +152,10 @@ If the evaluation set is large, the test will be time-consuming. It is recommend
| Configuration file | Algorithm | backbone | trans | seq | pred | | Configuration file | Algorithm | backbone | trans | seq | pred |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | | :--------: | :-------: | :-------: | :-------: | :-----: | :-----: |
| [rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml) | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc |
| [rec_chinese_common_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_common_train_v1.1.yml) | CRNN | ResNet34_vd | None | BiLSTM | ctc |
| rec_chinese_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | | rec_chinese_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc |
| rec_chinese_common_train.yml | CRNN | ResNet34_vd | None | BiLSTM | ctc |
| rec_icdar15_train.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc | | rec_icdar15_train.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc |
| rec_mv3_none_bilstm_ctc.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc | | rec_mv3_none_bilstm_ctc.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc |
| rec_mv3_none_none_ctc.yml | Rosetta | Mobilenet_v3 large 0.5 | None | None | ctc | | rec_mv3_none_none_ctc.yml | Rosetta | Mobilenet_v3 large 0.5 | None | None | ctc |
...@@ -165,7 +166,8 @@ If the evaluation set is large, the test will be time-consuming. It is recommend ...@@ -165,7 +166,8 @@ If the evaluation set is large, the test will be time-consuming. It is recommend
| rec_r34_vd_tps_bilstm_attn.yml | RARE | Resnet34_vd | tps | BiLSTM | attention | | rec_r34_vd_tps_bilstm_attn.yml | RARE | Resnet34_vd | tps | BiLSTM | attention |
| rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc | | rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc |
For training Chinese data, it is recommended to use `rec_chinese_lite_train.yml`. If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file: For training Chinese data, it is recommended to use
训练中文数据,推荐使用[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
co co
Take `rec_mv3_none_none_ctc.yml` as an example: Take `rec_mv3_none_none_ctc.yml` as an example:
``` ```
...@@ -222,7 +224,7 @@ The evaluation data set can be modified via `configs/rec/rec_icdar15_reader.yml` ...@@ -222,7 +224,7 @@ The evaluation data set can be modified via `configs/rec/rec_icdar15_reader.yml`
``` ```
export CUDA_VISIBLE_DEVICES=0 export CUDA_VISIBLE_DEVICES=0
# GPU evaluation, Global.checkpoints is the weight to be tested # GPU evaluation, Global.checkpoints is the weight to be tested
python3 tools/eval.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy python3 tools/eval.py -c configs/rec/rec_icdar15_reader.yml -o Global.checkpoints={path/to/weights}/best_accuracy
``` ```
### PREDICTION ### PREDICTION
...@@ -235,7 +237,7 @@ The default prediction picture is stored in `infer_img`, and the weight is speci ...@@ -235,7 +237,7 @@ The default prediction picture is stored in `infer_img`, and the weight is speci
``` ```
# Predict English results # Predict English results
python3 tools/infer_rec.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/en/word_1.jpg python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/en/word_1.jpg
``` ```
Input image: Input image:
...@@ -250,11 +252,11 @@ infer_img: doc/imgs_words/en/word_1.png ...@@ -250,11 +252,11 @@ infer_img: doc/imgs_words/en/word_1.png
word : joint word : joint
``` ```
The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml`, you can use the following command to predict the Chinese model: The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml`, you can use the following command to predict the Chinese model:
``` ```
# Predict Chinese results # Predict Chinese results
python3 tools/infer_rec.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/ch/word_1.jpg python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/ch/word_1.jpg
``` ```
Input image: Input image:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册