diff --git a/README.md b/README.md index 3243f3ce24fada59a0b6f509172b3277e080f7aa..4ebbf2f0067aa6faff3304c97b12afa7274ca554 100644 --- a/README.md +++ b/README.md @@ -189,7 +189,7 @@ PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训 请扫描下面二维码,完成问卷填写,获取加群二维码和OCR方向的炼丹秘籍
- +
diff --git a/README_en.md b/README_en.md index 37250da2cd3f6ccee76b522bf10745ecb8cd649e..c0f17b57710b68e8f33573f116a120607fa8847c 100644 --- a/README_en.md +++ b/README_en.md @@ -56,7 +56,6 @@ Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Andr - Algorithm introduction - [Text Detection Algorithm](#TEXTDETECTIONALGORITHM) - [Text Recognition Algorithm](#TEXTRECOGNITIONALGORITHM) - - [END-TO-END OCR Algorithm](#ENDENDOCRALGORITHM) - Model training/evaluation - [Text Detection](./doc/doc_en/detection_en.md) - [Text Recognition](./doc/doc_en/recognition_en.md) @@ -158,10 +157,6 @@ We use [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/ Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md) - -## END-TO-END OCR Algorithm -- [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(Baidu Self-Research, coming soon) - ## Visualization @@ -211,7 +206,7 @@ Please refer to the document for training guide and use of PaddleOCR text recogn Scan the QR code below with your wechat and completing the questionnaire, you can access to offical technical exchange group.
- +
diff --git a/doc/doc_ch/recognition.md b/doc/doc_ch/recognition.md index c554b9f11c96744ae928aaf9992606a364680557..1dc52efa8e6f65ef74c8e138f4f388027fe33f28 100644 --- a/doc/doc_ch/recognition.md +++ b/doc/doc_ch/recognition.md @@ -140,7 +140,7 @@ PaddleOCR提供了多种数据增强方式,如果您希望在训练时加入 训练过程中每种扰动方式以50%的概率被选择,具体代码实现请参考:[img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py) -*由于OpenCV的兼容性问题,扰动操作暂时只支持GPU* +*由于OpenCV的兼容性问题,扰动操作暂时只支持Linux* - 训练 diff --git a/doc/doc_ch/serving.md b/doc/doc_ch/serving.md index 892745671e639ccd19bec2bc4c789d48d43dfad9..99fe3006fde8762930ef9a168da81cce9069f8e0 100644 --- a/doc/doc_ch/serving.md +++ b/doc/doc_ch/serving.md @@ -61,6 +61,14 @@ hub install deploy\hubserving\ocr_rec\ hub install deploy\hubserving\ocr_system\ ``` +#### 安装模型 +安装服务模块前,需要将训练好的模型放到对应的文件夹内。默认使用的是: +./inference/ch_det_mv3_db/ +和 +./inference/ch_rec_mv3_crnn/ +这两个模型可以在https://github.com/PaddlePaddle/PaddleOCR 下载 +可以在./deploy/hubserving/ocr_system/params.py 里面修改成自己的模型 + ### 3. 启动服务 #### 方式1. 命令行命令启动(仅支持CPU) **启动命令:** diff --git a/doc/joinus.PNG b/doc/joinus.PNG new file mode 100644 index 0000000000000000000000000000000000000000..fa11f286d7d2d56d18d94e9034c3be77c974d42f Binary files /dev/null and b/doc/joinus.PNG differ diff --git a/doc/joinus.jpg b/doc/joinus.jpg deleted file mode 100644 index 6a287f3145c1910a2e25db35a94f5cbb14380b9d..0000000000000000000000000000000000000000 Binary files a/doc/joinus.jpg and /dev/null differ diff --git a/docker/hubserving/readme.md b/docker/hubserving/readme.md deleted file mode 100644 index 71e2377dcc4f7524384752b95c53f02471353f34..0000000000000000000000000000000000000000 --- a/docker/hubserving/readme.md +++ /dev/null @@ -1,58 +0,0 @@ -English | [简体中文](README_cn.md) - -## Introduction -Many user hopes package the PaddleOCR service into an docker image, so that it can be quickly released and used in the docker or k8s environment. - -This page provide some standardized code to achieve this goal. You can quickly publish the PaddleOCR project into a callable Restful API service through the following steps. (At present, the deployment based on the HubServing mode is implemented first, and author plans to increase the deployment of the PaddleServing mode in the futrue) - -## 1. Prerequisites - -You need to install the following basic components first: -a. Docker -b. Graphics driver and CUDA 10.0+(GPU) -c. NVIDIA Container Toolkit(GPU,Docker 19.03+ can skip this) -d. cuDNN 7.6+(GPU) - -## 2. Build Image -a. Download PaddleOCR sourcecode -``` -git clone https://github.com/PaddlePaddle/PaddleOCR.git -``` -b. Goto Dockerfile directory(ps:Need to distinguish between cpu and gpu version, the following takes cpu as an example, gpu version needs to replace the keyword) -``` -cd docker/cpu -``` -c. Build image -``` -docker build -t paddleocr:cpu . -``` - -## 3. Start container -a. CPU version -``` -sudo docker run -dp 8866:8866 --name paddle_ocr paddleocr:cpu -``` -b. GPU version (base on NVIDIA Container Toolkit) -``` -sudo nvidia-docker run -dp 8866:8866 --name paddle_ocr paddleocr:gpu -``` -c. GPU version (Docker 19.03++) -``` -sudo docker run -dp 8866:8866 --gpus all --name paddle_ocr paddleocr:gpu -``` -d. Check service status(If you can see the following statement then it means completed:Successfully installed ocr_system && Running on http://0.0.0.0:8866/) -``` -docker logs -f paddle_ocr -``` - -## 4. Test -a. Calculate the Base64 encoding of the picture to be recognized (if you just test, you can use a free online tool, like:https://freeonlinetools24.com/base64-image/) -b. Post a service request(sample request in sample_request.txt) - -``` -curl -H "Content-Type:application/json" -X POST --data "{\"images\": [\"Input image Base64 encode(need to delete the code 'data:image/jpg;base64,')\"]}" http://localhost:8866/predict/ocr_system -``` -c. Get resposne(If the call is successful, the following result will be returned) -``` -{"msg":"","results":[[{"confidence":0.8403433561325073,"text":"约定","text_region":[[345,377],[641,390],[634,540],[339,528]]},{"confidence":0.8131805658340454,"text":"最终相遇","text_region":[[356,532],[624,530],[624,596],[356,598]]}]],"status":"0"} -``` diff --git a/ppocr/data/det/random_crop_data.py b/ppocr/data/det/random_crop_data.py index d0c081e785cb17282b5486c718446b97a580b6cc..3e8629092e9a74a0764a0c04de829a02d00b6844 100644 --- a/ppocr/data/det/random_crop_data.py +++ b/ppocr/data/det/random_crop_data.py @@ -1,4 +1,4 @@ -# -*- coding:utf-8 -*- +# -*- coding:utf-8 -*- from __future__ import absolute_import from __future__ import division @@ -121,24 +121,22 @@ def RandomCropData(data, size): all_care_polys = [ text_polys[i] for i, tag in enumerate(ignore_tags) if not tag ] - # 计算crop区域 crop_x, crop_y, crop_w, crop_h = crop_area(im, all_care_polys, min_crop_side_ratio, max_tries) - # crop 图片 保持比例填充 - scale_w = size[0] / crop_w - scale_h = size[1] / crop_h + dh, dw = size + scale_w = dw / crop_w + scale_h = dh / crop_h scale = min(scale_w, scale_h) h = int(crop_h * scale) w = int(crop_w * scale) if keep_ratio: - padimg = np.zeros((size[1], size[0], im.shape[2]), im.dtype) + padimg = np.zeros((dh, dw, im.shape[2]), im.dtype) padimg[:h, :w] = cv2.resize( im[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], (w, h)) img = padimg else: img = cv2.resize(im[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], - tuple(size)) - # crop 文本框 + (dw, dh)) text_polys_crop = [] ignore_tags_crop = [] texts_crop = [] diff --git a/ppocr/modeling/architectures/rec_model.py b/ppocr/modeling/architectures/rec_model.py index fe2d4c16dce3882980fe2238ecc16c7c08a89792..f2e24abd9236ec163474361f0a89b775bc57448e 100755 --- a/ppocr/modeling/architectures/rec_model.py +++ b/ppocr/modeling/architectures/rec_model.py @@ -136,7 +136,7 @@ class RecModel(object): else: labels = None loader = None - if self.char_type == "ch" and self.infer_img: + if self.char_type == "ch" and self.infer_img and self.loss_type != "srn": image_shape[-1] = -1 if self.tps != None: logger.info( @@ -172,16 +172,13 @@ class RecModel(object): self.max_text_length ], dtype="float32") - feed_list = [ - image, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, - gsrm_slf_attn_bias2 - ] labels = { 'encoder_word_pos': encoder_word_pos, 'gsrm_word_pos': gsrm_word_pos, 'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1, 'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2 } + return image, labels, loader def __call__(self, mode): @@ -218,8 +215,13 @@ class RecModel(object): if self.loss_type == "ctc": predict = fluid.layers.softmax(predict) if self.loss_type == "srn": - raise Exception( - "Warning! SRN does not support export model currently") + return [ + image, labels, { + 'decoded_out': decoded_out, + 'predicts': predict + } + ] + return [image, {'decoded_out': decoded_out, 'predicts': predict}] else: predict = predicts['predict'] diff --git a/tools/infer/predict_rec.py b/tools/infer/predict_rec.py index 6a379853a4a7d62cbffcbebbf09e2fb3e2207b27..06273e9f9e5b42a9ecc829c435662e9aabcdd224 100755 --- a/tools/infer/predict_rec.py +++ b/tools/infer/predict_rec.py @@ -40,6 +40,7 @@ class TextRecognizer(object): self.character_type = args.rec_char_type self.rec_batch_num = args.rec_batch_num self.rec_algorithm = args.rec_algorithm + self.text_len = args.max_text_length self.use_zero_copy_run = args.use_zero_copy_run char_ops_params = { "character_type": args.rec_char_type, @@ -47,12 +48,15 @@ class TextRecognizer(object): "use_space_char": args.use_space_char, "max_text_length": args.max_text_length } - if self.rec_algorithm != "RARE": + if self.rec_algorithm in ["CRNN", "Rosetta", "STAR-Net"]: char_ops_params['loss_type'] = 'ctc' self.loss_type = 'ctc' - else: + elif self.rec_algorithm == "RARE": char_ops_params['loss_type'] = 'attention' self.loss_type = 'attention' + elif self.rec_algorithm == "SRN": + char_ops_params['loss_type'] = 'srn' + self.loss_type = 'srn' self.char_ops = CharacterOps(char_ops_params) def resize_norm_img(self, img, max_wh_ratio): @@ -75,6 +79,83 @@ class TextRecognizer(object): padding_im[:, :, 0:resized_w] = resized_image return padding_im + def resize_norm_img_srn(self, img, image_shape): + imgC, imgH, imgW = image_shape + + img_black = np.zeros((imgH, imgW)) + im_hei = img.shape[0] + im_wid = img.shape[1] + + if im_wid <= im_hei * 1: + img_new = cv2.resize(img, (imgH * 1, imgH)) + elif im_wid <= im_hei * 2: + img_new = cv2.resize(img, (imgH * 2, imgH)) + elif im_wid <= im_hei * 3: + img_new = cv2.resize(img, (imgH * 3, imgH)) + else: + img_new = cv2.resize(img, (imgW, imgH)) + + img_np = np.asarray(img_new) + img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) + img_black[:, 0:img_np.shape[1]] = img_np + img_black = img_black[:, :, np.newaxis] + + row, col, c = img_black.shape + c = 1 + + return np.reshape(img_black, (c, row, col)).astype(np.float32) + + def srn_other_inputs(self, image_shape, num_heads, max_text_length, + char_num): + + imgC, imgH, imgW = image_shape + feature_dim = int((imgH / 8) * (imgW / 8)) + + encoder_word_pos = np.array(range(0, feature_dim)).reshape( + (feature_dim, 1)).astype('int64') + gsrm_word_pos = np.array(range(0, max_text_length)).reshape( + (max_text_length, 1)).astype('int64') + + gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length)) + gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape( + [-1, 1, max_text_length, max_text_length]) + gsrm_slf_attn_bias1 = np.tile( + gsrm_slf_attn_bias1, + [1, num_heads, 1, 1]).astype('float32') * [-1e9] + + gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape( + [-1, 1, max_text_length, max_text_length]) + gsrm_slf_attn_bias2 = np.tile( + gsrm_slf_attn_bias2, + [1, num_heads, 1, 1]).astype('float32') * [-1e9] + + encoder_word_pos = encoder_word_pos[np.newaxis, :] + gsrm_word_pos = gsrm_word_pos[np.newaxis, :] + + return [ + encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, + gsrm_slf_attn_bias2 + ] + + def process_image_srn(self, + img, + image_shape, + num_heads, + max_text_length, + char_ops=None): + norm_img = self.resize_norm_img_srn(img, image_shape) + norm_img = norm_img[np.newaxis, :] + char_num = char_ops.get_char_num() + + [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \ + self.srn_other_inputs(image_shape, num_heads, max_text_length, char_num) + + gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32) + gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32) + + return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, + gsrm_slf_attn_bias2) + def __call__(self, img_list): img_num = len(img_list) # Calculate the aspect ratio of all text bars @@ -84,7 +165,7 @@ class TextRecognizer(object): # Sorting can speed up the recognition process indices = np.argsort(np.array(width_list)) - # rec_res = [] + #rec_res = [] rec_res = [['', 0.0]] * img_num batch_num = self.rec_batch_num predict_time = 0 @@ -98,20 +179,62 @@ class TextRecognizer(object): wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) for ino in range(beg_img_no, end_img_no): - # norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio) - norm_img = self.resize_norm_img(img_list[indices[ino]], - max_wh_ratio) - norm_img = norm_img[np.newaxis, :] - norm_img_batch.append(norm_img) - norm_img_batch = np.concatenate(norm_img_batch) + if self.loss_type != "srn": + norm_img = self.resize_norm_img(img_list[indices[ino]], + max_wh_ratio) + norm_img = norm_img[np.newaxis, :] + norm_img_batch.append(norm_img) + else: + norm_img = self.process_image_srn(img_list[indices[ino]], + self.rec_image_shape, 8, + 25, self.char_ops) + encoder_word_pos_list = [] + gsrm_word_pos_list = [] + gsrm_slf_attn_bias1_list = [] + gsrm_slf_attn_bias2_list = [] + encoder_word_pos_list.append(norm_img[1]) + gsrm_word_pos_list.append(norm_img[2]) + gsrm_slf_attn_bias1_list.append(norm_img[3]) + gsrm_slf_attn_bias2_list.append(norm_img[4]) + norm_img_batch.append(norm_img[0]) + + norm_img_batch = np.concatenate(norm_img_batch, axis=0) norm_img_batch = norm_img_batch.copy() - starttime = time.time() - if self.use_zero_copy_run: - self.input_tensor.copy_from_cpu(norm_img_batch) - self.predictor.zero_copy_run() - else: + + if self.loss_type == "srn": + starttime = time.time() + encoder_word_pos_list = np.concatenate(encoder_word_pos_list) + gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list) + gsrm_slf_attn_bias1_list = np.concatenate( + gsrm_slf_attn_bias1_list) + gsrm_slf_attn_bias2_list = np.concatenate( + gsrm_slf_attn_bias2_list) + starttime = time.time() + norm_img_batch = fluid.core.PaddleTensor(norm_img_batch) - self.predictor.run([norm_img_batch]) + encoder_word_pos_list = fluid.core.PaddleTensor( + encoder_word_pos_list) + gsrm_word_pos_list = fluid.core.PaddleTensor(gsrm_word_pos_list) + gsrm_slf_attn_bias1_list = fluid.core.PaddleTensor( + gsrm_slf_attn_bias1_list) + gsrm_slf_attn_bias2_list = fluid.core.PaddleTensor( + gsrm_slf_attn_bias2_list) + + inputs = [ + norm_img_batch, encoder_word_pos_list, + gsrm_slf_attn_bias1_list, gsrm_slf_attn_bias2_list, + gsrm_word_pos_list + ] + + self.predictor.run(inputs) + else: + starttime = time.time() + if self.use_zero_copy_run: + self.input_tensor.copy_from_cpu(norm_img_batch) + self.predictor.zero_copy_run() + else: + norm_img_batch = fluid.core.PaddleTensor(norm_img_batch) + self.predictor.run([norm_img_batch]) if self.loss_type == "ctc": rec_idx_batch = self.output_tensors[0].copy_to_cpu() @@ -136,6 +259,26 @@ class TextRecognizer(object): score = np.mean(probs[valid_ind, ind[valid_ind]]) # rec_res.append([preds_text, score]) rec_res[indices[beg_img_no + rno]] = [preds_text, score] + elif self.loss_type == 'srn': + rec_idx_batch = self.output_tensors[0].copy_to_cpu() + probs = self.output_tensors[1].copy_to_cpu() + char_num = self.char_ops.get_char_num() + preds = rec_idx_batch.reshape(-1) + elapse = time.time() - starttime + predict_time += elapse + total_preds = preds.copy() + for ino in range(int(len(rec_idx_batch) / self.text_len)): + preds = total_preds[ino * self.text_len:(ino + 1) * + self.text_len] + ind = np.argmax(probs, axis=1) + valid_ind = np.where(preds != int(char_num - 1))[0] + if len(valid_ind) == 0: + continue + score = np.mean(probs[valid_ind, ind[valid_ind]]) + preds = preds[:valid_ind[-1] + 1] + preds_text = self.char_ops.decode(preds) + + rec_res[indices[beg_img_no + ino]] = [preds_text, score] else: rec_idx_batch = self.output_tensors[0].copy_to_cpu() predict_batch = self.output_tensors[1].copy_to_cpu() @@ -170,6 +313,7 @@ def main(args): continue valid_image_file_list.append(image_file) img_list.append(img) + try: rec_res, predict_time = text_recognizer(img_list) except Exception as e: diff --git a/tools/infer/utility.py b/tools/infer/utility.py index 1aa94f544fdc5d67556d54c0d08644358366e6ee..9e2c29100d178e8920d4b58343ee00b166b28494 100755 --- a/tools/infer/utility.py +++ b/tools/infer/utility.py @@ -125,7 +125,8 @@ def create_predictor(args, mode): predictor = create_paddle_predictor(config) input_names = predictor.get_input_names() - input_tensor = predictor.get_input_tensor(input_names[0]) + for name in input_names: + input_tensor = predictor.get_input_tensor(name) output_names = predictor.get_output_names() output_tensors = [] for output_name in output_names: diff --git a/tools/infer_rec.py b/tools/infer_rec.py index fd70cd66dccc2cb755efbd10c4d16c9f7a97146d..29fc5b40a890cd6e8fa3ca7d3f0999835555d9bd 100755 --- a/tools/infer_rec.py +++ b/tools/infer_rec.py @@ -145,7 +145,7 @@ def main(): preds = preds.reshape(-1) probs = np.array(predict[1]) ind = np.argmax(probs, axis=1) - valid_ind = np.where(preds != int(char_num-1))[0] + valid_ind = np.where(preds != int(char_num - 1))[0] if len(valid_ind) == 0: continue score = np.mean(probs[valid_ind, ind[valid_ind]]) diff --git a/tools/program.py b/tools/program.py index 34e3419c1bfcbbd0115e86c025e551265d18732c..6495ff2970b15d28719c1dc385cfe9d21a78ad3a 100755 --- a/tools/program.py +++ b/tools/program.py @@ -209,10 +209,19 @@ def build_export(config, main_prog, startup_prog): with fluid.unique_name.guard(): func_infor = config['Architecture']['function'] model = create_module(func_infor)(params=config) - image, outputs = model(mode='export') + algorithm = config['Global']['algorithm'] + if algorithm == "SRN": + image, others, outputs = model(mode='export') + else: + image, outputs = model(mode='export') fetches_var_name = sorted([name for name in outputs.keys()]) fetches_var = [outputs[name] for name in fetches_var_name] - feeded_var_names = [image.name] + if algorithm == "SRN": + others_var_names = sorted([name for name in others.keys()]) + feeded_var_names = [image.name] + others_var_names + else: + feeded_var_names = [image.name] + target_vars = fetches_var return feeded_var_names, target_vars, fetches_var_name