From 73c360ce229b587a0ce0585215c4797c9939e7f4 Mon Sep 17 00:00:00 2001 From: tink2123 Date: Fri, 6 May 2022 06:24:59 +0000 Subject: [PATCH] upload rec pipeline --- doc/doc_ch/PP-OCRv3_introduction.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/doc/doc_ch/PP-OCRv3_introduction.md b/doc/doc_ch/PP-OCRv3_introduction.md index 5e278ad8..557c97c2 100644 --- a/doc/doc_ch/PP-OCRv3_introduction.md +++ b/doc/doc_ch/PP-OCRv3_introduction.md @@ -92,7 +92,7 @@ PP-OCRv3 识别模型在 PP-OCRv2 的基础上从8个策略上进一步优化, | 05 | + TextConAug | 12M | 76.3% | 7.6ms | | 06 | + TextRotNet | 12M | 76.9% | 7.6ms | | 07 | + UDML | 12M | 78.4% | 7.6ms | -| 08 | + HLD | 12M | 79.4% | 7.6ms | +| 08 | + UIM | 12M | 79.4% | 7.6ms | 注: 测试速度时,实验01-03输入图片尺寸均为(3,32,320),04-08输入图片尺寸均为(3,48,320) @@ -112,7 +112,7 @@ PP-OCRv3 期望在提升模型精度的同时,不带来额外的推理耗时 2. 将4个 Global Attenntion Block 减小到2个,精度为72.9%,加速69%,网络结构如下所示: 3. 实验发现 Global Attention 的预测速度与输入其特征的shape有关,因此后移Global Mixing Block的位置到池化层之后,精度下降为71.9%,速度超越 CNN-base 的PP-OCRv2 22%,网络结构如下所示: - + | id | 策略 | 模型大小 | 精度 | 速度(cpu + mkldnn)| |-----|-----|--------|----| --- | -- GitLab