提交 6fcc2e71 编写于 作者: 文幕地方's avatar 文幕地方

fix bug in mem

上级 1a2c4007
...@@ -16,10 +16,14 @@ ...@@ -16,10 +16,14 @@
namespace PaddleOCR { namespace PaddleOCR {
void CRNNRecognizer::Run(std::vector<cv::Mat> img_list, std::vector<double> *times) { void CRNNRecognizer::Run(std::vector<cv::Mat> img_list,
std::chrono::duration<float> preprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now(); std::vector<double> *times) {
std::chrono::duration<float> inference_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now(); std::chrono::duration<float> preprocess_diff =
std::chrono::duration<float> postprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now(); std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
std::chrono::duration<float> inference_diff =
std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
std::chrono::duration<float> postprocess_diff =
std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
int img_num = img_list.size(); int img_num = img_list.size();
std::vector<float> width_list; std::vector<float> width_list;
...@@ -28,27 +32,31 @@ void CRNNRecognizer::Run(std::vector<cv::Mat> img_list, std::vector<double> *tim ...@@ -28,27 +32,31 @@ void CRNNRecognizer::Run(std::vector<cv::Mat> img_list, std::vector<double> *tim
} }
std::vector<int> indices = Utility::argsort(width_list); std::vector<int> indices = Utility::argsort(width_list);
for (int beg_img_no = 0; beg_img_no < img_num; beg_img_no += this->rec_batch_num_) { for (int beg_img_no = 0; beg_img_no < img_num;
beg_img_no += this->rec_batch_num_) {
auto preprocess_start = std::chrono::steady_clock::now(); auto preprocess_start = std::chrono::steady_clock::now();
int end_img_no = min(img_num, beg_img_no + this->rec_batch_num_); int end_img_no = min(img_num, beg_img_no + this->rec_batch_num_);
float max_wh_ratio = 0; float max_wh_ratio = 0;
for (int ino = beg_img_no; ino < end_img_no; ino ++) { for (int ino = beg_img_no; ino < end_img_no; ino++) {
int h = img_list[indices[ino]].rows; int h = img_list[indices[ino]].rows;
int w = img_list[indices[ino]].cols; int w = img_list[indices[ino]].cols;
float wh_ratio = w * 1.0 / h; float wh_ratio = w * 1.0 / h;
max_wh_ratio = max(max_wh_ratio, wh_ratio); max_wh_ratio = max(max_wh_ratio, wh_ratio);
} }
int batch_width = 0;
std::vector<cv::Mat> norm_img_batch; std::vector<cv::Mat> norm_img_batch;
for (int ino = beg_img_no; ino < end_img_no; ino ++) { for (int ino = beg_img_no; ino < end_img_no; ino++) {
cv::Mat srcimg; cv::Mat srcimg;
img_list[indices[ino]].copyTo(srcimg); img_list[indices[ino]].copyTo(srcimg);
cv::Mat resize_img; cv::Mat resize_img;
this->resize_op_.Run(srcimg, resize_img, max_wh_ratio, this->use_tensorrt_); this->resize_op_.Run(srcimg, resize_img, max_wh_ratio,
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_); this->use_tensorrt_);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
this->is_scale_);
norm_img_batch.push_back(resize_img); norm_img_batch.push_back(resize_img);
batch_width = max(resize_img.cols, batch_width);
} }
int batch_width = int(ceilf(32 * max_wh_ratio)) - 1;
std::vector<float> input(this->rec_batch_num_ * 3 * 32 * batch_width, 0.0f); std::vector<float> input(this->rec_batch_num_ * 3 * 32 * batch_width, 0.0f);
this->permute_op_.Run(norm_img_batch, input.data()); this->permute_op_.Run(norm_img_batch, input.data());
auto preprocess_end = std::chrono::steady_clock::now(); auto preprocess_end = std::chrono::steady_clock::now();
...@@ -86,11 +94,11 @@ void CRNNRecognizer::Run(std::vector<cv::Mat> img_list, std::vector<double> *tim ...@@ -86,11 +94,11 @@ void CRNNRecognizer::Run(std::vector<cv::Mat> img_list, std::vector<double> *tim
float max_value = 0.0f; float max_value = 0.0f;
for (int n = 0; n < predict_shape[1]; n++) { for (int n = 0; n < predict_shape[1]; n++) {
argmax_idx = argmax_idx = int(Utility::argmax(
int(Utility::argmax(&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]], &predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]])); &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
max_value = max_value = float(*std::max_element(
float(*std::max_element(&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]], &predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]])); &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) { if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
...@@ -116,7 +124,6 @@ void CRNNRecognizer::Run(std::vector<cv::Mat> img_list, std::vector<double> *tim ...@@ -116,7 +124,6 @@ void CRNNRecognizer::Run(std::vector<cv::Mat> img_list, std::vector<double> *tim
times->push_back(double(postprocess_diff.count() * 1000)); times->push_back(double(postprocess_diff.count() * 1000));
} }
void CRNNRecognizer::LoadModel(const std::string &model_dir) { void CRNNRecognizer::LoadModel(const std::string &model_dir) {
// AnalysisConfig config; // AnalysisConfig config;
paddle_infer::Config config; paddle_infer::Config config;
...@@ -133,20 +140,14 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) { ...@@ -133,20 +140,14 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
if (this->precision_ == "int8") { if (this->precision_ == "int8") {
precision = paddle_infer::Config::Precision::kInt8; precision = paddle_infer::Config::Precision::kInt8;
} }
config.EnableTensorRtEngine( config.EnableTensorRtEngine(1 << 20, 10, 3, precision, false, false);
1 << 20, 10, 3,
precision,
false, false);
std::map<std::string, std::vector<int>> min_input_shape = { std::map<std::string, std::vector<int>> min_input_shape = {
{"x", {1, 3, 32, 10}}, {"x", {1, 3, 32, 10}}, {"lstm_0.tmp_0", {10, 1, 96}}};
{"lstm_0.tmp_0", {10, 1, 96}}};
std::map<std::string, std::vector<int>> max_input_shape = { std::map<std::string, std::vector<int>> max_input_shape = {
{"x", {1, 3, 32, 2000}}, {"x", {1, 3, 32, 2000}}, {"lstm_0.tmp_0", {1000, 1, 96}}};
{"lstm_0.tmp_0", {1000, 1, 96}}};
std::map<std::string, std::vector<int>> opt_input_shape = { std::map<std::string, std::vector<int>> opt_input_shape = {
{"x", {1, 3, 32, 320}}, {"x", {1, 3, 32, 320}}, {"lstm_0.tmp_0", {25, 1, 96}}};
{"lstm_0.tmp_0", {25, 1, 96}}};
config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape, config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
opt_input_shape); opt_input_shape);
...@@ -168,7 +169,7 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) { ...@@ -168,7 +169,7 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
config.SwitchIrOptim(true); config.SwitchIrOptim(true);
config.EnableMemoryOptim(); config.EnableMemoryOptim();
// config.DisableGlogInfo(); // config.DisableGlogInfo();
this->predictor_ = CreatePredictor(config); this->predictor_ = CreatePredictor(config);
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册