提交 65815e9a 编写于 作者: L LDOUBLEV

doc

上级 0a63385f
......@@ -8,12 +8,12 @@ Python功能测试的主程序为`test_python.sh`,可以测试基于Python的
| 算法名称 | 模型名称 | 单机单卡 | 单机多卡 | 多机多卡 | 模型压缩(单机多卡) |
| :---- | :---- | :---- | :---- | :---- | :---- |
| DB | ch_ppocr_mobile_v2.0_det| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练FPGM裁剪、PACT量化 |
| DB | ch_ppocr_server_v2.0_det| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练FPGM裁剪、PACT量化 |
| CRNN | ch_ppocr_mobile_v2.0_rec| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练:FPGM裁剪、PACT量化 |
| CRNN | ch_ppocr_server_v2.0_rec| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练:FPGM裁剪、PACT量化 |
|PP-OCR| ch_ppocr_mobile_v2.0| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练:FPGM裁剪、PACT量化 |
|PP-OCR| ch_ppocr_server_v2.0| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练:FPGM裁剪、PACT量化 |
| DB | ch_ppocr_mobile_v2.0_det| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练FPGM裁剪、PACT量化 |
| DB | ch_ppocr_server_v2.0_det| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练FPGM裁剪、PACT量化 |
| CRNN | ch_ppocr_mobile_v2.0_rec| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练、PACT量化 |
| CRNN | ch_ppocr_server_v2.0_rec| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练、PACT量化 |
|PP-OCR| ch_ppocr_mobile_v2.0| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | - |
|PP-OCR| ch_ppocr_server_v2.0| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | - |
- 预测相关:
......@@ -24,7 +24,7 @@ Python功能测试的主程序为`test_python.sh`,可以测试基于Python的
| DB |ch_ppocr_server_v2.0_det| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
| CRNN |ch_ppocr_mobile_v2.0_rec| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
| CRNN |ch_ppocr_server_v2.0_rec| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|PP-OCR|ch_ppocr_server_v2.0 | CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|PP-OCR|ch_ppocr_mobile_v2.0 | CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|PP-OCR|ch_ppocr_server_v2.0 | CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
......@@ -47,7 +47,7 @@ Python功能测试的主程序为`test_python.sh`,可以测试基于Python的
## 2. 功能测试
先运行`prepare.sh`准备数据和模型,然后运行`test_python.sh`进行测试,最终在```tests/output```目录下生成`infer_*.log`格式的日志文件。
先运行`prepare.sh`准备数据和模型,然后运行`test_python.sh`进行测试,最终在```tests/output```目录下生成`python_infer_*.log`格式的日志文件。
test_python.sh包含四种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册