提交 652beeab 编写于 作者: 文幕地方's avatar 文幕地方

update readme

上级 b1ae9136
# 文档视觉问答(DOC-VQA)
DOC-VQA是VQA任务中的一种,DOC-VQA主要针对文本图像的文字内容提出问题。
VQA指视觉问答,主要针对图像内容进行提问和回答,DOC-VQA是VQA任务中的一种,DOC-VQA主要针对文本图像的文字内容提出问题。
PP-Structure 里的 DOC-VQA算法基于PaddleNLP自然语言处理算法库进行开发。
主要特性如下:
- 集成[LayoutXLM](https://arxiv.org/pdf/2104.08836.pdf)模型以及PP-OCR预测引擎。
- 支持基于多模态方法的语义实体识别 (Semantic Entity Recognition, SER) 以及关系抽取 (Relation Extraction, RE) 任务。基于 SER 任务,可以完成对图像中的文本识别与分类;基于 RE 任务,可以完成对图象中的文本内容的关系提取,如判断问题对
- 支持SER任务和RE任务的自定义训练
- 支持基于多模态方法的语义实体识别 (Semantic Entity Recognition, SER) 以及关系抽取 (Relation Extraction, RE) 任务。基于 SER 任务,可以完成对图像中的文本识别与分类;基于 RE 任务,可以完成对图象中的文本内容的关系提取,如判断问题对(pair)。
- 支持SER任务和RE任务的自定义训练
- 支持OCR+SER的端到端系统预测与评估。
- 支持OCR+SER+RE的端到端系统预测。
......@@ -20,7 +20,7 @@ PP-Structure 里的 DOC-VQA算法基于PaddleNLP自然语言处理算法库进
我们在 [XFUN](https://github.com/doc-analysis/XFUND) 评估数据集上对算法进行了评估,性能如下
|任务| Hmean| 模型下载地址|
|任务| f1 | 模型下载地址|
|:---:|:---:| :---:|
|SER|0.9056| [链接](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar)|
|RE|0.7113| [链接](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_re_pretrained.tar)|
......
......@@ -18,6 +18,10 @@ import numpy as np
class DataCollator:
"""
data batch
"""
def __call__(self, batch):
data_dict = {}
to_tensor_keys = []
......@@ -32,8 +36,3 @@ class DataCollator:
for k in to_tensor_keys:
data_dict[k] = paddle.to_tensor(data_dict[k])
return data_dict
class DataCollatorNoBatch:
def __call__(self, batch):
return batch[0]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册