提交 63484257 编写于 作者: xuyang2233's avatar xuyang2233

add robustscanner

上级 d9d0ec45
Global:
use_gpu: true
epoch_num: 5
log_smooth_window: 20
print_batch_step: 20
save_model_dir: ./output/rec/rec_r31_robustscanner/
save_epoch_step: 1
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: ./inference/rec_inference
# for data or label process
character_dict_path: ppocr/utils/dict90.txt
max_text_length: 40
infer_mode: False
use_space_char: False
rm_symbol: True
save_res_path: ./output/rec/predicts_robustscanner.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Piecewise
decay_epochs: [3, 4]
values: [0.001, 0.0001, 0.00001]
regularizer:
name: 'L2'
factor: 0
Architecture:
model_type: rec
algorithm: RobustScanner
Transform:
Backbone:
name: ResNet31V2
Head:
name: RobustScannerHead
enc_outchannles: 128
hybrid_dec_rnn_layers: 2
hybrid_dec_dropout: 0
position_dec_rnn_layers: 2
start_idx: 91
mask: True
padding_idx: 92
encode_value: False
max_seq_len: 40
Loss:
name: SARLoss
PostProcess:
name: SARLabelDecode
Metric:
name: RecMetric
is_filter: True
Train:
dataset:
name: LMDBDataSet
data_dir: I:/dataset/OCR/deep_text_recognition/data_lmdb/evaluation/CUTE80
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SARLabelEncode: # Class handling label
- RobustScannerRecResizeImg:
image_shape: [3, 48, 48, 160] # h:48 w:[48,160]
width_downsample_ratio: 0.25
max_seq_len: 40
- KeepKeys:
keep_keys: ['image', 'label', 'valid_ratio', 'word_positons'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 4
drop_last: True
num_workers: 0
use_shared_memory: False
Eval:
dataset:
name: LMDBDataSet
data_dir: I:/dataset/OCR/deep_text_recognition/data_lmdb/evaluation/CUTE80
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SARLabelEncode: # Class handling label
- RobustScannerRecResizeImg:
image_shape: [3, 48, 48, 160]
max_seq_len: 40
width_downsample_ratio: 0.25
- KeepKeys:
keep_keys: ['image', 'label', 'valid_ratio', 'word_positons'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1
num_workers: 0
use_shared_memory: False
......@@ -66,6 +66,7 @@
- [x] [SAR](./algorithm_rec_sar.md)
- [x] [SEED](./algorithm_rec_seed.md)
- [x] [SVTR](./algorithm_rec_svtr.md)
- [x] [RobustScanner](./algorithm_rec_robustscanner.md)
参考[DTRB](https://arxiv.org/abs/1904.01906)[3]文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
......@@ -84,6 +85,7 @@
|SAR|Resnet31| 87.20% | rec_r31_sar | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) |
|SEED|Aster_Resnet| 85.35% | rec_resnet_stn_bilstm_att | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) |
|SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) |
|RobustScanner|ResNet31V2| 87.77% | rec_r31_robustscanner | [训练模型]() |
<a name="2"></a>
......
# RobustScanner
- [1. 算法简介](#1)
- [2. 环境配置](#2)
- [3. 模型训练、评估、预测](#3)
- [3.1 训练](#3-1)
- [3.2 评估](#3-2)
- [3.3 预测](#3-3)
- [4. 推理部署](#4)
- [4.1 Python推理](#4-1)
- [4.2 C++推理](#4-2)
- [4.3 Serving服务化部署](#4-3)
- [4.4 更多推理部署](#4-4)
- [5. FAQ](#5)
<a name="1"></a>
## 1. 算法简介
论文信息:
> [RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition](https://arxiv.org/pdf/2007.07542.pdf)
> Xiaoyu Yue, Zhanghui Kuang, Chenhao Lin, Hongbin Sun, Wayne
Zhang
> ECCV, 2020
使用MJSynth和SynthText两个合成文字识别数据集训练,在IIIT, SVT, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下:
|模型|骨干网络|配置文件|Acc|下载链接|
| --- | --- | --- | --- | --- |
|RobustScanner|ResNet31V2|[rec_r31_robustscanner.yml](../../configs/rec/rec_r31_robustscanner.yml)|87.77%|[训练模型]()|
注:除了使用MJSynth和SynthText两个文字识别数据集外,还加入了[SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg)数据(提取码:627x),和部分真实数据,具体数据细节可以参考论文。
<a name="2"></a>
## 2. 环境配置
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
<a name="3"></a>
## 3. 模型训练、评估、预测
请参考[文本识别教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
训练
具体地,在完成数据准备后,便可以启动训练,训练命令如下:
```
#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_r31_robustscanner.yml
#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r31_robustscanner.yml
```
评估
```
# GPU 评估, Global.pretrained_model 为待测权重
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
预测:
```
# 预测使用的配置文件必须与训练一致
python3 tools/infer_rec.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```
<a name="4"></a>
## 4. 推理部署
<a name="4-1"></a>
### 4.1 Python推理
首先将RobustScanner文本识别训练过程中保存的模型,转换成inference model。( [模型下载地址]() ),可以使用如下命令进行转换:
```
python3 tools/export_model.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/rec_r31_robustscanner
```
RobustScanner文本识别模型推理,可以执行如下命令:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_r31_robustscanner/" --rec_image_shape="3, 48, 48, 160" --rec_algorithm="RobustScanner" --rec_char_dict_path="ppocr/utils/dict90.txt" --use_space_char=False
```
<a name="4-2"></a>
### 4.2 C++推理
由于C++预处理后处理还未支持SAR,所以暂未支持
<a name="4-3"></a>
### 4.3 Serving服务化部署
暂不支持
<a name="4-4"></a>
### 4.4 更多推理部署
暂不支持
<a name="5"></a>
## 5. FAQ
## 引用
```bibtex
@article{Li2019ShowAA,
title={Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition},
author={Hui Li and Peng Wang and Chunhua Shen and Guyu Zhang},
journal={ArXiv},
year={2019},
volume={abs/1811.00751}
}
```
......@@ -65,6 +65,7 @@ Supported text recognition algorithms (Click the link to get the tutorial):
- [x] [SAR](./algorithm_rec_sar_en.md)
- [x] [SEED](./algorithm_rec_seed_en.md)
- [x] [SVTR](./algorithm_rec_svtr_en.md)
- [x] [RobustScanner](./algorithm_rec_robustscanner_en.md)
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
......@@ -83,7 +84,7 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|SAR|Resnet31| 87.20% | rec_r31_sar | [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) |
|SEED|Aster_Resnet| 85.35% | rec_resnet_stn_bilstm_att | [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) |
|SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) |
|RobustScanner|ResNet31V2| 87.77% | rec_r31_robustscanner | [trained model]() |
<a name="2"></a>
......
# SAR
- [1. Introduction](#1)
- [2. Environment](#2)
- [3. Model Training / Evaluation / Prediction](#3)
- [3.1 Training](#3-1)
- [3.2 Evaluation](#3-2)
- [3.3 Prediction](#3-3)
- [4. Inference and Deployment](#4)
- [4.1 Python Inference](#4-1)
- [4.2 C++ Inference](#4-2)
- [4.3 Serving](#4-3)
- [4.4 More](#4-4)
- [5. FAQ](#5)
<a name="1"></a>
## 1. Introduction
Paper:
> [RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition](https://arxiv.org/pdf/2007.07542.pdf)
> Xiaoyu Yue, Zhanghui Kuang, Chenhao Lin, Hongbin Sun, Wayne
Zhang
> ECCV, 2020
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
|Model|Backbone|config|Acc|Download link|
| --- | --- | --- | --- | --- |
|RobustScanner|ResNet31V2|[rec_r31_robustscanner.yml](../../configs/rec/rec_r31_robustscanner.yml)|87.77%|[train model]()|
Note:In addition to using the two text recognition datasets MJSynth and SynthText, [SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg) data (extraction code: 627x), and some real data are used in training, the specific data details can refer to the paper.
<a name="2"></a>
## 2. Environment
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
<a name="3"></a>
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Training:
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
```
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_r31_robustscanner.yml
#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r31_robustscanner.yml
```
Evaluation:
```
# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
Prediction:
```
# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```
<a name="4"></a>
## 4. Inference and Deployment
<a name="4-1"></a>
### 4.1 Python Inference
First, the model saved during the RobustScanner text recognition training process is converted into an inference model. ( [Model download link]() ), you can use the following command to convert:
```
python3 tools/export_model.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/rec_r31_robustscanner
```
For RobustScanner text recognition model inference, the following commands can be executed:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_r31_robustscanner/" --rec_image_shape="3, 48, 48, 160" --rec_algorithm="RobustScanner" --rec_char_dict_path="ppocr/utils/dict90.txt" --use_space_char=False
```
<a name="4-2"></a>
### 4.2 C++ Inference
Not supported
<a name="4-3"></a>
### 4.3 Serving
Not supported
<a name="4-4"></a>
### 4.4 More
Not supported
<a name="5"></a>
## 5. FAQ
## Citation
```bibtex
@article{Li2019ShowAA,
title={Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition},
author={Hui Li and Peng Wang and Chunhua Shen and Guyu Zhang},
journal={ArXiv},
year={2019},
volume={abs/1811.00751}
}
```
......@@ -23,7 +23,8 @@ from .random_crop_data import EastRandomCropData, RandomCropImgMask
from .make_pse_gt import MakePseGt
from .rec_img_aug import RecAug, RecConAug, RecResizeImg, ClsResizeImg, \
SRNRecResizeImg, NRTRRecResizeImg, SARRecResizeImg, PRENResizeImg
SRNRecResizeImg, NRTRRecResizeImg, SARRecResizeImg, PRENResizeImg, \
RobustScannerRecResizeImg
from .ssl_img_aug import SSLRotateResize
from .randaugment import RandAugment
from .copy_paste import CopyPaste
......
......@@ -206,6 +206,23 @@ class PRENResizeImg(object):
data['image'] = resized_img.astype(np.float32)
return data
class RobustScannerRecResizeImg(object):
def __init__(self, image_shape, max_seq_len, width_downsample_ratio=0.25, **kwargs):
self.image_shape = image_shape
self.width_downsample_ratio = width_downsample_ratio
self.max_seq_len = max_seq_len
def __call__(self, data):
img = data['image']
norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
img, self.image_shape, self.width_downsample_ratio)
word_positons = robustscanner_other_inputs(self.max_seq_len)
data['image'] = norm_img
data['resized_shape'] = resize_shape
data['pad_shape'] = pad_shape
data['valid_ratio'] = valid_ratio
data['word_positons'] = word_positons
return data
def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
imgC, imgH, imgW_min, imgW_max = image_shape
......@@ -351,6 +368,9 @@ def srn_other_inputs(image_shape, num_heads, max_text_length):
gsrm_slf_attn_bias2
]
def robustscanner_other_inputs(max_text_length):
word_pos = np.array(range(0, max_text_length)).astype('int64')
return word_pos
def flag():
"""
......
......@@ -28,6 +28,7 @@ def build_backbone(config, model_type):
from .rec_mv1_enhance import MobileNetV1Enhance
from .rec_nrtr_mtb import MTB
from .rec_resnet_31 import ResNet31
from .rec_resnet_31_v2 import ResNet31V2
from .rec_resnet_aster import ResNet_ASTER
from .rec_micronet import MicroNet
from .rec_efficientb3_pren import EfficientNetb3_PREN
......@@ -35,7 +36,7 @@ def build_backbone(config, model_type):
support_dict = [
'MobileNetV1Enhance', 'MobileNetV3', 'ResNet', 'ResNetFPN', 'MTB',
"ResNet31", "ResNet_ASTER", 'MicroNet', 'EfficientNetb3_PREN',
'SVTRNet'
'SVTRNet', "ResNet31V2"
]
elif model_type == "e2e":
from .e2e_resnet_vd_pg import ResNet
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
__all__ = ["ResNet31V2"]
conv_weight_attr = nn.initializer.KaimingNormal()
bn_weight_attr = ParamAttr(initializer=nn.initializer.Uniform(), learning_rate=1)
def conv3x3(in_channel, out_channel, stride=1):
return nn.Conv2D(
in_channel,
out_channel,
kernel_size=3,
stride=stride,
padding=1,
weight_attr=conv_weight_attr,
bias_attr=False)
class BasicBlock(nn.Layer):
expansion = 1
def __init__(self, in_channels, channels, stride=1, downsample=False):
super().__init__()
self.conv1 = conv3x3(in_channels, channels, stride)
self.bn1 = nn.BatchNorm2D(channels, weight_attr=bn_weight_attr)
self.relu = nn.ReLU()
self.conv2 = conv3x3(channels, channels)
self.bn2 = nn.BatchNorm2D(channels, weight_attr=bn_weight_attr)
self.downsample = downsample
if downsample:
self.downsample = nn.Sequential(
nn.Conv2D(
in_channels,
channels * self.expansion,
1,
stride,
weight_attr=conv_weight_attr,
bias_attr=False),
nn.BatchNorm2D(channels * self.expansion, weight_attr=bn_weight_attr))
else:
self.downsample = nn.Sequential()
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet31V2(nn.Layer):
'''
Args:
in_channels (int): Number of channels of input image tensor.
layers (list[int]): List of BasicBlock number for each stage.
channels (list[int]): List of out_channels of Conv2d layer.
out_indices (None | Sequence[int]): Indices of output stages.
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
'''
def __init__(self,
in_channels=3,
layers=[1, 2, 5, 3],
channels=[64, 128, 256, 256, 512, 512, 512],
out_indices=None,
last_stage_pool=False):
super(ResNet31V2, self).__init__()
assert isinstance(in_channels, int)
assert isinstance(last_stage_pool, bool)
self.out_indices = out_indices
self.last_stage_pool = last_stage_pool
# conv 1 (Conv Conv)
self.conv1_1 = nn.Conv2D(
in_channels, channels[0], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
self.bn1_1 = nn.BatchNorm2D(channels[0], weight_attr=bn_weight_attr)
self.relu1_1 = nn.ReLU()
self.conv1_2 = nn.Conv2D(
channels[0], channels[1], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
self.bn1_2 = nn.BatchNorm2D(channels[1], weight_attr=bn_weight_attr)
self.relu1_2 = nn.ReLU()
# conv 2 (Max-pooling, Residual block, Conv)
self.pool2 = nn.MaxPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.block2 = self._make_layer(channels[1], channels[2], layers[0])
self.conv2 = nn.Conv2D(
channels[2], channels[2], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
self.bn2 = nn.BatchNorm2D(channels[2], weight_attr=bn_weight_attr)
self.relu2 = nn.ReLU()
# conv 3 (Max-pooling, Residual block, Conv)
self.pool3 = nn.MaxPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.block3 = self._make_layer(channels[2], channels[3], layers[1])
self.conv3 = nn.Conv2D(
channels[3], channels[3], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
self.bn3 = nn.BatchNorm2D(channels[3], weight_attr=bn_weight_attr)
self.relu3 = nn.ReLU()
# conv 4 (Max-pooling, Residual block, Conv)
self.pool4 = nn.MaxPool2D(
kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
self.block4 = self._make_layer(channels[3], channels[4], layers[2])
self.conv4 = nn.Conv2D(
channels[4], channels[4], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
self.bn4 = nn.BatchNorm2D(channels[4], weight_attr=bn_weight_attr)
self.relu4 = nn.ReLU()
# conv 5 ((Max-pooling), Residual block, Conv)
self.pool5 = None
if self.last_stage_pool:
self.pool5 = nn.MaxPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.block5 = self._make_layer(channels[4], channels[5], layers[3])
self.conv5 = nn.Conv2D(
channels[5], channels[5], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
self.bn5 = nn.BatchNorm2D(channels[5], weight_attr=bn_weight_attr)
self.relu5 = nn.ReLU()
self.out_channels = channels[-1]
def _make_layer(self, input_channels, output_channels, blocks):
layers = []
for _ in range(blocks):
downsample = None
if input_channels != output_channels:
downsample = nn.Sequential(
nn.Conv2D(
input_channels,
output_channels,
kernel_size=1,
stride=1,
weight_attr=conv_weight_attr,
bias_attr=False),
nn.BatchNorm2D(output_channels, weight_attr=bn_weight_attr))
layers.append(
BasicBlock(
input_channels, output_channels, downsample=downsample))
input_channels = output_channels
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1_1(x)
x = self.bn1_1(x)
x = self.relu1_1(x)
x = self.conv1_2(x)
x = self.bn1_2(x)
x = self.relu1_2(x)
outs = []
for i in range(4):
layer_index = i + 2
pool_layer = getattr(self, f'pool{layer_index}')
block_layer = getattr(self, f'block{layer_index}')
conv_layer = getattr(self, f'conv{layer_index}')
bn_layer = getattr(self, f'bn{layer_index}')
relu_layer = getattr(self, f'relu{layer_index}')
if pool_layer is not None:
x = pool_layer(x)
x = block_layer(x)
x = conv_layer(x)
x = bn_layer(x)
x = relu_layer(x)
outs.append(x)
if self.out_indices is not None:
return tuple([outs[i] for i in self.out_indices])
return x
......@@ -33,6 +33,7 @@ def build_head(config):
from .rec_aster_head import AsterHead
from .rec_pren_head import PRENHead
from .rec_multi_head import MultiHead
from .rec_robustscanner_head import RobustScannerHead
# cls head
from .cls_head import ClsHead
......@@ -46,7 +47,7 @@ def build_head(config):
'DBHead', 'PSEHead', 'FCEHead', 'EASTHead', 'SASTHead', 'CTCHead',
'ClsHead', 'AttentionHead', 'SRNHead', 'PGHead', 'Transformer',
'TableAttentionHead', 'SARHead', 'AsterHead', 'SDMGRHead', 'PRENHead',
'MultiHead'
'MultiHead', 'RobustScannerHead'
]
#table head
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/encoders/channel_reduction_encoder.py
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/decoders/robust_scanner_decoder.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
class BaseDecoder(nn.Layer):
def __init__(self, **kwargs):
super().__init__()
def forward_train(self, feat, out_enc, targets, img_metas):
raise NotImplementedError
def forward_test(self, feat, out_enc, img_metas):
raise NotImplementedError
def forward(self,
feat,
out_enc,
label=None,
valid_ratios=None,
word_positions=None,
train_mode=True):
self.train_mode = train_mode
if train_mode:
return self.forward_train(feat, out_enc, label, valid_ratios, word_positions)
return self.forward_test(feat, out_enc, valid_ratios, word_positions)
class ChannelReductionEncoder(nn.Layer):
"""Change the channel number with a one by one convoluational layer.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
"""
def __init__(self,
in_channels,
out_channels,
**kwargs):
super(ChannelReductionEncoder, self).__init__()
self.layer = nn.Conv2D(
in_channels, out_channels, kernel_size=1, stride=1, padding=0, weight_attr=nn.initializer.XavierNormal())
def forward(self, feat):
"""
Args:
feat (Tensor): Image features with the shape of
:math:`(N, C_{in}, H, W)`.
Returns:
Tensor: A tensor of shape :math:`(N, C_{out}, H, W)`.
"""
return self.layer(feat)
def masked_fill(x, mask, value):
y = paddle.full(x.shape, value, x.dtype)
return paddle.where(mask, y, x)
class DotProductAttentionLayer(nn.Layer):
def __init__(self, dim_model=None):
super().__init__()
self.scale = dim_model**-0.5 if dim_model is not None else 1.
def forward(self, query, key, value, h, w, valid_ratios=None):
query = paddle.transpose(query, (0, 2, 1))
logits = paddle.matmul(query, key) * self.scale
n, c, t = logits.shape
# reshape to (n, c, h, w)
logits = paddle.reshape(logits, [n, c, h, w])
if valid_ratios is not None:
# cal mask of attention weight
for i, valid_ratio in enumerate(valid_ratios):
valid_width = min(w, int(w * valid_ratio + 0.5))
if valid_width < w:
logits[i, :, :, valid_width:] = float('-inf')
# reshape to (n, c, h, w)
logits = paddle.reshape(logits, [n, c, t])
weights = F.softmax(logits, axis=2)
value = paddle.transpose(value, (0, 2, 1))
glimpse = paddle.matmul(weights, value)
glimpse = paddle.transpose(glimpse, (0, 2, 1))
return glimpse
class SequenceAttentionDecoder(BaseDecoder):
"""Sequence attention decoder for RobustScanner.
RobustScanner: `RobustScanner: Dynamically Enhancing Positional Clues for
Robust Text Recognition <https://arxiv.org/abs/2007.07542>`_
Args:
num_classes (int): Number of output classes :math:`C`.
rnn_layers (int): Number of RNN layers.
dim_input (int): Dimension :math:`D_i` of input vector ``feat``.
dim_model (int): Dimension :math:`D_m` of the model. Should also be the
same as encoder output vector ``out_enc``.
max_seq_len (int): Maximum output sequence length :math:`T`.
start_idx (int): The index of `<SOS>`.
mask (bool): Whether to mask input features according to
``img_meta['valid_ratio']``.
padding_idx (int): The index of `<PAD>`.
dropout (float): Dropout rate.
return_feature (bool): Return feature or logits as the result.
encode_value (bool): Whether to use the output of encoder ``out_enc``
as `value` of attention layer. If False, the original feature
``feat`` will be used.
Warning:
This decoder will not predict the final class which is assumed to be
`<PAD>`. Therefore, its output size is always :math:`C - 1`. `<PAD>`
is also ignored by loss as specified in
:obj:`mmocr.models.textrecog.recognizer.EncodeDecodeRecognizer`.
"""
def __init__(self,
num_classes=None,
rnn_layers=2,
dim_input=512,
dim_model=128,
max_seq_len=40,
start_idx=0,
mask=True,
padding_idx=None,
dropout=0,
return_feature=False,
encode_value=False):
super().__init__()
self.num_classes = num_classes
self.dim_input = dim_input
self.dim_model = dim_model
self.return_feature = return_feature
self.encode_value = encode_value
self.max_seq_len = max_seq_len
self.start_idx = start_idx
self.mask = mask
self.embedding = nn.Embedding(
self.num_classes, self.dim_model, padding_idx=padding_idx)
self.sequence_layer = nn.LSTM(
input_size=dim_model,
hidden_size=dim_model,
num_layers=rnn_layers,
time_major=False,
dropout=dropout)
self.attention_layer = DotProductAttentionLayer()
self.prediction = None
if not self.return_feature:
pred_num_classes = num_classes - 1
self.prediction = nn.Linear(
dim_model if encode_value else dim_input, pred_num_classes)
def forward_train(self, feat, out_enc, targets, valid_ratios):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
targets (Tensor): a tensor of shape :math:`(N, T)`. Each element is the index of a
character.
valid_ratios (Tensor): valid length ratio of img.
Returns:
Tensor: A raw logit tensor of shape :math:`(N, T, C-1)` if
``return_feature=False``. Otherwise it would be the hidden feature
before the prediction projection layer, whose shape is
:math:`(N, T, D_m)`.
"""
tgt_embedding = self.embedding(targets)
n, c_enc, h, w = out_enc.shape
assert c_enc == self.dim_model
_, c_feat, _, _ = feat.shape
assert c_feat == self.dim_input
_, len_q, c_q = tgt_embedding.shape
assert c_q == self.dim_model
assert len_q <= self.max_seq_len
query, _ = self.sequence_layer(tgt_embedding)
query = paddle.transpose(query, (0, 2, 1))
key = paddle.reshape(out_enc, [n, c_enc, h * w])
if self.encode_value:
value = key
else:
value = paddle.reshape(feat, [n, c_feat, h * w])
# mask = None
# if valid_ratios is not None:
# mask = paddle.zeros(shape=[n, len_q, h, w], dtype='bool')
# for i, valid_ratio in enumerate(valid_ratios):
# valid_width = min(w, math.ceil(w * valid_ratio))
# if valid_width < w:
# mask[i, :, :, valid_width:] = True
# # mask = mask.view(n, h * w)
# mask = paddle.reshape(mask, (n, len_q, h * w))
attn_out = self.attention_layer(query, key, value, h, w, valid_ratios)
# attn_out = attn_out.permute(0, 2, 1).contiguous()
attn_out = paddle.transpose(attn_out, (0, 2, 1))
if self.return_feature:
return attn_out
out = self.prediction(attn_out)
return out
def forward_test(self, feat, out_enc, valid_ratios):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
valid_ratios (Tensor): valid length ratio of img.
Returns:
Tensor: The output logit sequence tensor of shape
:math:`(N, T, C-1)`.
"""
seq_len = self.max_seq_len
batch_size = feat.shape[0]
# decode_sequence = (feat.new_ones(
# (batch_size, seq_len)) * self.start_idx).long()
decode_sequence = (paddle.ones((batch_size, seq_len), dtype='int64') * self.start_idx)
outputs = []
for i in range(seq_len):
step_out = self.forward_test_step(feat, out_enc, decode_sequence,
i, valid_ratios)
outputs.append(step_out)
max_idx = paddle.argmax(step_out, axis=1, keepdim=False)
if i < seq_len - 1:
decode_sequence[:, i + 1] = max_idx
outputs = paddle.stack(outputs, 1)
return outputs
def forward_test_step(self, feat, out_enc, decode_sequence, current_step,
valid_ratios):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
decode_sequence (Tensor): Shape :math:`(N, T)`. The tensor that
stores history decoding result.
current_step (int): Current decoding step.
valid_ratios (Tensor): valid length ratio of img
Returns:
Tensor: Shape :math:`(N, C-1)`. The logit tensor of predicted
tokens at current time step.
"""
embed = self.embedding(decode_sequence)
n, c_enc, h, w = out_enc.shape
assert c_enc == self.dim_model
_, c_feat, _, _ = feat.shape
assert c_feat == self.dim_input
_, _, c_q = embed.shape
assert c_q == self.dim_model
query, _ = self.sequence_layer(embed)
query = paddle.transpose(query, (0, 2, 1))
key = paddle.reshape(out_enc, [n, c_enc, h * w])
if self.encode_value:
value = key
else:
value = paddle.reshape(feat, [n, c_feat, h * w])
# len_q = query.shape[2]
# mask = None
# if valid_ratios is not None:
# mask = paddle.zeros(shape=[n, len_q, h, w], dtype='bool')
# for i, valid_ratio in enumerate(valid_ratios):
# valid_width = min(w, math.ceil(w * valid_ratio))
# if valid_width < w:
# mask[i, :, :, valid_width:] = True
# # mask = mask.view(n, h * w)
# mask = paddle.reshape(mask, (n, len_q, h * w))
# [n, c, l]
# attn_out = self.attention_layer(query, key, value, mask)
attn_out = self.attention_layer(query, key, value, h, w, valid_ratios)
out = attn_out[:, :, current_step]
if self.return_feature:
return out
out = self.prediction(out)
out = F.softmax(out, dim=-1)
return out
class PositionAwareLayer(nn.Layer):
def __init__(self, dim_model, rnn_layers=2):
super().__init__()
self.dim_model = dim_model
self.rnn = nn.LSTM(
input_size=dim_model,
hidden_size=dim_model,
num_layers=rnn_layers,
time_major=False)
self.mixer = nn.Sequential(
nn.Conv2D(
dim_model, dim_model, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2D(
dim_model, dim_model, kernel_size=3, stride=1, padding=1))
def forward(self, img_feature):
n, c, h, w = img_feature.shape
rnn_input = paddle.transpose(img_feature, (0, 2, 3, 1))
rnn_input = paddle.reshape(rnn_input, (n * h, w, c))
rnn_output, _ = self.rnn(rnn_input)
rnn_output = paddle.reshape(rnn_output, (n, h, w, c))
rnn_output = paddle.transpose(rnn_output, (0, 3, 1, 2))
out = self.mixer(rnn_output)
return out
class PositionAttentionDecoder(BaseDecoder):
"""Position attention decoder for RobustScanner.
RobustScanner: `RobustScanner: Dynamically Enhancing Positional Clues for
Robust Text Recognition <https://arxiv.org/abs/2007.07542>`_
Args:
num_classes (int): Number of output classes :math:`C`.
rnn_layers (int): Number of RNN layers.
dim_input (int): Dimension :math:`D_i` of input vector ``feat``.
dim_model (int): Dimension :math:`D_m` of the model. Should also be the
same as encoder output vector ``out_enc``.
max_seq_len (int): Maximum output sequence length :math:`T`.
mask (bool): Whether to mask input features according to
``img_meta['valid_ratio']``.
return_feature (bool): Return feature or logits as the result.
encode_value (bool): Whether to use the output of encoder ``out_enc``
as `value` of attention layer. If False, the original feature
``feat`` will be used.
Warning:
This decoder will not predict the final class which is assumed to be
`<PAD>`. Therefore, its output size is always :math:`C - 1`. `<PAD>`
is also ignored by loss
"""
def __init__(self,
num_classes=None,
rnn_layers=2,
dim_input=512,
dim_model=128,
max_seq_len=40,
mask=True,
return_feature=False,
encode_value=False):
super().__init__()
self.num_classes = num_classes
self.dim_input = dim_input
self.dim_model = dim_model
self.max_seq_len = max_seq_len
self.return_feature = return_feature
self.encode_value = encode_value
self.mask = mask
self.embedding = nn.Embedding(self.max_seq_len + 1, self.dim_model)
self.position_aware_module = PositionAwareLayer(
self.dim_model, rnn_layers)
self.attention_layer = DotProductAttentionLayer()
self.prediction = None
if not self.return_feature:
pred_num_classes = num_classes - 1
self.prediction = nn.Linear(
dim_model if encode_value else dim_input, pred_num_classes)
def _get_position_index(self, length, batch_size):
position_index_list = []
for i in range(batch_size):
position_index = paddle.arange(0, end=length, step=1, dtype='int64')
position_index_list.append(position_index)
batch_position_index = paddle.stack(position_index_list, axis=0)
return batch_position_index
def forward_train(self, feat, out_enc, targets, valid_ratios, position_index):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
targets (dict): A dict with the key ``padded_targets``, a
tensor of shape :math:`(N, T)`. Each element is the index of a
character.
valid_ratios (Tensor): valid length ratio of img.
position_index (Tensor): The position of each word.
Returns:
Tensor: A raw logit tensor of shape :math:`(N, T, C-1)` if
``return_feature=False``. Otherwise it will be the hidden feature
before the prediction projection layer, whose shape is
:math:`(N, T, D_m)`.
"""
#
n, c_enc, h, w = out_enc.shape
assert c_enc == self.dim_model
_, c_feat, _, _ = feat.shape
assert c_feat == self.dim_input
_, len_q = targets.shape
assert len_q <= self.max_seq_len
# position_index = self._get_position_index(len_q, n)
position_out_enc = self.position_aware_module(out_enc)
query = self.embedding(position_index)
query = paddle.transpose(query, (0, 2, 1))
key = paddle.reshape(position_out_enc, (n, c_enc, h * w))
if self.encode_value:
value = paddle.reshape(out_enc,(n, c_enc, h * w))
else:
value = paddle.reshape(feat,(n, c_feat, h * w))
# mask = None
# if valid_ratios is not None:
# mask = paddle.zeros(shape=[n, len_q, h, w], dtype='bool')
# for i, valid_ratio in enumerate(valid_ratios):
# valid_width = min(w, math.ceil(w * valid_ratio))
# if valid_width < w:
# mask[i, :, :, valid_width:] = True
# # mask = mask.view(n, h * w)
# mask = paddle.reshape(mask, (n, len_q, h * w))
attn_out = self.attention_layer(query, key, value, h, w, valid_ratios)
attn_out = paddle.transpose(attn_out, (0, 2, 1)) # [n, len_q, dim_v]
if self.return_feature:
return attn_out
return self.prediction(attn_out)
def forward_test(self, feat, out_enc, valid_ratios, position_index):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
valid_ratios (Tensor): valid length ratio of img
position_index (Tensor): The position of each word.
Returns:
Tensor: A raw logit tensor of shape :math:`(N, T, C-1)` if
``return_feature=False``. Otherwise it would be the hidden feature
before the prediction projection layer, whose shape is
:math:`(N, T, D_m)`.
"""
# seq_len = self.max_seq_len
n, c_enc, h, w = out_enc.shape
assert c_enc == self.dim_model
_, c_feat, _, _ = feat.shape
assert c_feat == self.dim_input
# the _get_position_index is not ok for export_model
# position_index = self._get_position_index(self.max_seq_len, n)
position_out_enc = self.position_aware_module(out_enc)
query = self.embedding(position_index)
query = paddle.transpose(query, (0, 2, 1))
key = paddle.reshape(position_out_enc, (n, c_enc, h * w))
if self.encode_value:
value = paddle.reshape(out_enc,(n, c_enc, h * w))
else:
value = paddle.reshape(feat,(n, c_feat, h * w))
# len_q = query.shape[2]
# mask = None
# if valid_ratios is not None:
# mask = paddle.zeros(shape=[n, len_q, h, w], dtype='bool')
# for i, valid_ratio in enumerate(valid_ratios):
# valid_width = min(w, math.ceil(w * valid_ratio))
# if valid_width < w:
# mask[i, :, :, valid_width:] = True
# # mask = mask.view(n, h * w)
# mask = paddle.reshape(mask, (n, len_q, h * w))
attn_out = self.attention_layer(query, key, value, h, w, valid_ratios)
attn_out = paddle.transpose(attn_out, (0, 2, 1)) # [n, len_q, dim_v]
if self.return_feature:
return attn_out
return self.prediction(attn_out)
class RobustScannerFusionLayer(nn.Layer):
def __init__(self, dim_model, dim=-1):
super(RobustScannerFusionLayer, self).__init__()
self.dim_model = dim_model
self.dim = dim
self.linear_layer = nn.Linear(dim_model * 2, dim_model * 2)
def forward(self, x0, x1):
assert x0.shape == x1.shape
fusion_input = paddle.concat([x0, x1], self.dim)
output = self.linear_layer(fusion_input)
output = F.glu(output, self.dim)
return output
class RobustScannerDecoder(BaseDecoder):
"""Decoder for RobustScanner.
RobustScanner: `RobustScanner: Dynamically Enhancing Positional Clues for
Robust Text Recognition <https://arxiv.org/abs/2007.07542>`_
Args:
num_classes (int): Number of output classes :math:`C`.
dim_input (int): Dimension :math:`D_i` of input vector ``feat``.
dim_model (int): Dimension :math:`D_m` of the model. Should also be the
same as encoder output vector ``out_enc``.
max_seq_len (int): Maximum output sequence length :math:`T`.
start_idx (int): The index of `<SOS>`.
mask (bool): Whether to mask input features according to
``img_meta['valid_ratio']``.
padding_idx (int): The index of `<PAD>`.
encode_value (bool): Whether to use the output of encoder ``out_enc``
as `value` of attention layer. If False, the original feature
``feat`` will be used.
Warning:
This decoder will not predict the final class which is assumed to be
`<PAD>`. Therefore, its output size is always :math:`C - 1`. `<PAD>`
is also ignored by loss as specified in
:obj:`mmocr.models.textrecog.recognizer.EncodeDecodeRecognizer`.
"""
def __init__(self,
num_classes=None,
dim_input=512,
dim_model=128,
hybrid_decoder_rnn_layers=2,
hybrid_decoder_dropout=0,
position_decoder_rnn_layers=2,
max_seq_len=40,
start_idx=0,
mask=True,
padding_idx=None,
encode_value=False):
super().__init__()
self.num_classes = num_classes
self.dim_input = dim_input
self.dim_model = dim_model
self.max_seq_len = max_seq_len
self.encode_value = encode_value
self.start_idx = start_idx
self.padding_idx = padding_idx
self.mask = mask
# init hybrid decoder
self.hybrid_decoder = SequenceAttentionDecoder(
num_classes=num_classes,
rnn_layers=hybrid_decoder_rnn_layers,
dim_input=dim_input,
dim_model=dim_model,
max_seq_len=max_seq_len,
start_idx=start_idx,
mask=mask,
padding_idx=padding_idx,
dropout=hybrid_decoder_dropout,
encode_value=encode_value,
return_feature=True
)
# init position decoder
self.position_decoder = PositionAttentionDecoder(
num_classes=num_classes,
rnn_layers=position_decoder_rnn_layers,
dim_input=dim_input,
dim_model=dim_model,
max_seq_len=max_seq_len,
mask=mask,
encode_value=encode_value,
return_feature=True
)
self.fusion_module = RobustScannerFusionLayer(
self.dim_model if encode_value else dim_input)
pred_num_classes = num_classes - 1
self.prediction = nn.Linear(dim_model if encode_value else dim_input,
pred_num_classes)
def forward_train(self, feat, out_enc, target, valid_ratios, word_positions):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
target (dict): A dict with the key ``padded_targets``, a
tensor of shape :math:`(N, T)`. Each element is the index of a
character.
valid_ratios (Tensor):
word_positions (Tensor): The position of each word.
Returns:
Tensor: A raw logit tensor of shape :math:`(N, T, C-1)`.
"""
hybrid_glimpse = self.hybrid_decoder.forward_train(
feat, out_enc, target, valid_ratios)
position_glimpse = self.position_decoder.forward_train(
feat, out_enc, target, valid_ratios, word_positions)
fusion_out = self.fusion_module(hybrid_glimpse, position_glimpse)
out = self.prediction(fusion_out)
return out
def forward_test(self, feat, out_enc, valid_ratios, word_positions):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
valid_ratios (Tensor):
word_positions (Tensor): The position of each word.
Returns:
Tensor: The output logit sequence tensor of shape
:math:`(N, T, C-1)`.
"""
seq_len = self.max_seq_len
batch_size = feat.shape[0]
# decode_sequence = (feat.new_ones(
# (batch_size, seq_len)) * self.start_idx).long()
decode_sequence = (paddle.ones((batch_size, seq_len), dtype='int64') * self.start_idx)
position_glimpse = self.position_decoder.forward_test(
feat, out_enc, valid_ratios, word_positions)
outputs = []
for i in range(seq_len):
hybrid_glimpse_step = self.hybrid_decoder.forward_test_step(
feat, out_enc, decode_sequence, i, valid_ratios)
fusion_out = self.fusion_module(hybrid_glimpse_step,
position_glimpse[:, i, :])
char_out = self.prediction(fusion_out)
char_out = F.softmax(char_out, -1)
outputs.append(char_out)
max_idx = paddle.argmax(char_out, axis=1, keepdim=False)
if i < seq_len - 1:
decode_sequence[:, i + 1] = max_idx
outputs = paddle.stack(outputs, 1)
return outputs
class RobustScannerHead(nn.Layer):
def __init__(self,
out_channels, # 90 + unknown + start + padding
in_channels,
enc_outchannles=128,
hybrid_dec_rnn_layers=2,
hybrid_dec_dropout=0,
position_dec_rnn_layers=2,
start_idx=0,
max_seq_len=40,
mask=True,
padding_idx=None,
encode_value=False,
**kwargs):
super(RobustScannerHead, self).__init__()
# encoder module
self.encoder = ChannelReductionEncoder(
in_channels=in_channels, out_channels=enc_outchannles)
# decoder module
self.decoder =RobustScannerDecoder(
num_classes=out_channels,
dim_input=in_channels,
dim_model=enc_outchannles,
hybrid_decoder_rnn_layers=hybrid_dec_rnn_layers,
hybrid_decoder_dropout=hybrid_dec_dropout,
position_decoder_rnn_layers=position_dec_rnn_layers,
max_seq_len=max_seq_len,
start_idx=start_idx,
mask=mask,
padding_idx=padding_idx,
encode_value=encode_value)
def forward(self, inputs, targets=None):
'''
targets: [label, valid_ratio, word_positions]
'''
out_enc = self.encoder(inputs)
valid_ratios = None
word_positions = targets[-1]
if len(targets) > 1:
valid_ratios = targets[-2]
if self.training:
label = targets[0] # label
label = paddle.to_tensor(label, dtype='int64')
final_out = self.decoder(
inputs, out_enc, label, valid_ratios, word_positions)
if not self.training:
final_out = self.decoder(
inputs,
out_enc,
label=None,
valid_ratios=valid_ratios,
word_positions=word_positions,
train_mode=False)
return final_out
Global:
use_gpu: true
epoch_num: 5
log_smooth_window: 20
print_batch_step: 20
save_model_dir: ./output/rec/rec_r31_robustscanner/
save_epoch_step: 1
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
# for data or label process
character_dict_path: ppocr/utils/dict90.txt
max_text_length: 40
infer_mode: False
use_space_char: False
rm_symbol: True
save_res_path: ./output/rec/predicts_robustscanner.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Piecewise
decay_epochs: [3, 4]
values: [0.001, 0.0001, 0.00001]
regularizer:
name: 'L2'
factor: 0
Architecture:
model_type: rec
algorithm: RobustScanner
Transform:
Backbone:
name: ResNet31V2
Head:
name: RobustScannerHead
enc_outchannles: 128
hybrid_dec_rnn_layers: 2
hybrid_dec_dropout: 0
position_dec_rnn_layers: 2
start_idx: 91
mask: True
padding_idx: 92
encode_value: False
max_seq_len: 40
Loss:
name: SARLoss
PostProcess:
name: SARLabelDecode
Metric:
name: RecMetric
is_filter: True
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ic15_data/
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SARLabelEncode: # Class handling label
- RobustScannerRecResizeImg:
image_shape: [3, 48, 48, 160] # h:48 w:[48,160]
width_downsample_ratio: 0.25
max_seq_len: 40
- KeepKeys:
keep_keys: ['image', 'label', 'valid_ratio', 'word_positons'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 16
drop_last: True
num_workers: 0
use_shared_memory: False
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ic15_data
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SARLabelEncode: # Class handling label
- RobustScannerRecResizeImg:
image_shape: [3, 48, 48, 160]
max_seq_len: 40
width_downsample_ratio: 0.25
- KeepKeys:
keep_keys: ['image', 'label', 'valid_ratio', 'word_positons'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 16
num_workers: 0
use_shared_memory: False
===========================train_params===========================
model_name:rec_r31_robustscanner
python:python
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=5
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=64
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_r31_robustscanner/rec_r31_robustscanner.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_r31_robustscanner/rec_r31_robustscanner.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.checkpoints:
norm_export:tools/export_model.py -c test_tipc/configs/rec_r31_robustscanner/rec_r31_robustscanner.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
train_model:./inference/rec_r31_robustscanner/best_accuracy
infer_export:tools/export_model.py -c test_tipc/configs/rec_r31_robustscanner/rec_r31_robustscanner.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/dict90.txt --rec_image_shape="3,48,48,160" --use_space_char=False --rec_algorithm="RobustScanner"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:False|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
......@@ -73,7 +73,7 @@ def main():
config['Architecture']["Head"]['out_channels'] = char_num
model = build_model(config['Architecture'])
extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR"]
extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR", "RobustScanner"]
extra_input = False
if config['Architecture']['algorithm'] == 'Distillation':
for key in config['Architecture']["Models"]:
......
......@@ -73,6 +73,22 @@ def export_single_model(model, arch_config, save_path, logger, quanter=None):
shape=[None, 3, 64, 512], dtype="float32"),
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] == "RobustScanner":
max_seq_len = arch_config["Head"]["max_seq_len"]
other_shape = [
paddle.static.InputSpec(
shape=[None, 3, 48, 160], dtype="float32"),
[
paddle.static.InputSpec(
shape=[None, ],
dtype="float32"),
paddle.static.InputSpec(
shape=[None, max_seq_len],
dtype="int64")
]
]
model = to_static(model, input_spec=other_shape)
else:
infer_shape = [3, -1, -1]
if arch_config["model_type"] == "rec":
......
......@@ -69,6 +69,14 @@ class TextRecognizer(object):
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char
}
elif self.rec_algorithm == "RobustScanner":
postprocess_params = {
'name': 'SARLabelDecode',
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
"rm_symbol": True
}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, self.config = \
utility.create_predictor(args, 'rec', logger)
......@@ -266,7 +274,8 @@ class TextRecognizer(object):
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
imgC, imgH, imgW = self.rec_image_shape
# imgC, imgH, imgW = self.rec_image_shape
imgH, imgW = self.rec_image_shape[-2:]
max_wh_ratio = imgW / imgH
# max_wh_ratio = 0
for ino in range(beg_img_no, end_img_no):
......@@ -300,6 +309,18 @@ class TextRecognizer(object):
self.rec_image_shape)
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
elif self.rec_algorithm == "RobustScanner":
norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
img_list[indices[ino]], self.rec_image_shape, width_downsample_ratio=0.25)
norm_img = norm_img[np.newaxis, :]
valid_ratio = np.expand_dims(valid_ratio, axis=0)
valid_ratios = []
valid_ratios.append(valid_ratio)
norm_img_batch.append(norm_img)
word_positions_list = []
word_positions = np.array(range(0, 40)).astype('int64')
word_positions = np.expand_dims(word_positions, axis=0)
word_positions_list.append(word_positions)
else:
norm_img = self.resize_norm_img(img_list[indices[ino]],
max_wh_ratio)
......@@ -351,6 +372,35 @@ class TextRecognizer(object):
norm_img_batch,
valid_ratios,
]
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = norm_img_batch
outputs = self.predictor.run(self.output_tensors,
input_dict)
preds = outputs[0]
else:
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(
input_names[i])
input_tensor.copy_from_cpu(inputs[i])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = outputs[0]
elif self.rec_algorithm == "RobustScanner":
valid_ratios = np.concatenate(valid_ratios)
word_positions_list = np.concatenate(word_positions_list)
inputs = [
norm_img_batch,
valid_ratios,
word_positions_list
]
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = norm_img_batch
......
......@@ -96,6 +96,8 @@ def main():
]
elif config['Architecture']['algorithm'] == "SAR":
op[op_name]['keep_keys'] = ['image', 'valid_ratio']
elif config['Architecture']['algorithm'] == "RobustScanner":
op[op_name]['keep_keys'] = ['image', 'valid_ratio', 'word_positons']
else:
op[op_name]['keep_keys'] = ['image']
transforms.append(op)
......@@ -131,6 +133,12 @@ def main():
if config['Architecture']['algorithm'] == "SAR":
valid_ratio = np.expand_dims(batch[-1], axis=0)
img_metas = [paddle.to_tensor(valid_ratio)]
if config['Architecture']['algorithm'] == "RobustScanner":
valid_ratio = np.expand_dims(batch[1], axis=0)
word_positons = np.expand_dims(batch[2], axis=0)
img_metas = [paddle.to_tensor(valid_ratio),
paddle.to_tensor(word_positons),
]
images = np.expand_dims(batch[0], axis=0)
images = paddle.to_tensor(images)
......@@ -138,6 +146,8 @@ def main():
preds = model(images, others)
elif config['Architecture']['algorithm'] == "SAR":
preds = model(images, img_metas)
elif config['Architecture']['algorithm'] == "RobustScanner":
preds = model(images, img_metas)
else:
preds = model(images)
post_result = post_process_class(preds)
......
......@@ -202,7 +202,7 @@ def train(config,
model.train()
use_srn = config['Architecture']['algorithm'] == "SRN"
extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR"]
extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR", "RobustScanner"]
extra_input = False
if config['Architecture']['algorithm'] == 'Distillation':
for key in config['Architecture']["Models"]:
......@@ -559,7 +559,8 @@ def preprocess(is_train=False):
assert alg in [
'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'PREN', 'FCE', 'SVTR'
'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'PREN', 'FCE', 'SVTR',
'RobustScanner'
]
device = 'cpu'
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册