diff --git a/deploy/slim/quantization/README.md b/deploy/slim/quantization/README.md index b35761c649ae5faf9e0db8663047419d991282fe..e1844367a02a45b681cdec48893ebcf9e59b1e17 100755 --- a/deploy/slim/quantization/README.md +++ b/deploy/slim/quantization/README.md @@ -4,7 +4,7 @@ 模型量化可以在基本不损失模型的精度的情况下,将FP32精度的模型参数转换为Int8精度,减小模型参数大小并加速计算,使用量化后的模型在移动端等部署时更具备速度优势。 本教程将介绍如何使用飞桨模型压缩库PaddleSlim做PaddleOCR模型的压缩。 -PaddleSlim(项目链接:https://github.com/PaddlePaddle/PaddleSlim)集成了模型剪枝、量化(包括量化训练和离线量化)、蒸馏和神经网络搜索等多种业界常用且领先的模型压缩功能,如果您感兴趣,可以关注并了解。 +[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim) 集成了模型剪枝、量化(包括量化训练和离线量化)、蒸馏和神经网络搜索等多种业界常用且领先的模型压缩功能,如果您感兴趣,可以关注并了解。 在开始本教程之前,建议先了解[PaddleOCR模型的训练方法](../../../doc/doc_ch/quickstart.md)以及[PaddleSlim](https://paddleslim.readthedocs.io/zh_CN/latest/index.html)