diff --git a/configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml b/configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml
index 275c71b97d21e6b168ef6aafae67eb2eb91c6f2b..fd88495928b18c300386c6a9fd0cf57d840db21e 100644
--- a/configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml
+++ b/configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml
@@ -11,7 +11,7 @@ Global:
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
- checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy
+ checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
diff --git a/configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml b/configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml
index e34d94490fbfa81452a7ff507f6568e5ac29e3b7..2694601254935be7d003148681334263d734579a 100644
--- a/configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml
+++ b/configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml
@@ -11,7 +11,7 @@ Global:
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet18_vd_pretrained
- checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy
+ checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
diff --git a/configs/det/det_mv3_db.yml b/configs/det/det_mv3_db.yml
index 640f3a205b1fd3ec7fe19d5c6b6e3aef9ddf3968..36a6f755383e525a8a496b060465cf027f3f31f8 100644
--- a/configs/det/det_mv3_db.yml
+++ b/configs/det/det_mv3_db.yml
@@ -11,7 +11,7 @@ Global:
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
- checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy
+ checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
diff --git a/doc/doc_ch/config.md b/doc/doc_ch/config.md
index af5b6e51553895a9dcda9012bde729ce849c2136..3f8f7ff1674d63e721d7ad2ced31bf771b0183eb 100644
--- a/doc/doc_ch/config.md
+++ b/doc/doc_ch/config.md
@@ -10,14 +10,14 @@
## 配置文件参数介绍
-以 `rec_chinese_lite_train_v1.1.yml ` 为例
+以 `rec_chinese_lite_train_v2.0.yml ` 为例
### Global
| 字段 | 用途 | 默认值 | 备注 |
| :----------------------: | :---------------------: | :--------------: | :--------------------: |
| use_gpu | 设置代码是否在gpu运行 | true | \ |
| epoch_num | 最大训练epoch数 | 500 | \ |
-| log_smooth_window | 滑动窗口大小 | 20 | \ |
+| log_smooth_window | log队列长度,每次打印输出队列里的中间值 | 20 | \ |
| print_batch_step | 设置打印log间隔 | 10 | \ |
| save_model_dir | 设置模型保存路径 | output/{算法名称} | \ |
| save_epoch_step | 设置模型保存间隔 | 3 | \ |
diff --git a/doc/doc_ch/inference.md b/doc/doc_ch/inference.md
index 8f4bea07fc42ba824a1006e87f3d45cccbaf4069..663533c492ab5dc0bd22cc79bd95c9d1d194d854 100644
--- a/doc/doc_ch/inference.md
+++ b/doc/doc_ch/inference.md
@@ -186,7 +186,7 @@ python3 tools/infer/predict_det.py --det_algorithm="EAST" --image_dir="./doc/img
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
-![](../imgs_results/det_res_img_10_east.jpg)
+(coming soon)
**注意**:本代码库中,EAST后处理Locality-Aware NMS有python和c++两种版本,c++版速度明显快于python版。由于c++版本nms编译版本问题,只有python3.5环境下会调用c++版nms,其他情况将调用python版nms。
@@ -205,7 +205,7 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
-![](../imgs_results/det_res_img_10_sast.jpg)
+(coming soon)
#### (2). 弯曲文本检测模型(Total-Text)
首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在Total-Text英文数据集训练的模型为例([模型下载地址(coming soon)](link)),可以使用如下命令进行转换:
@@ -221,7 +221,7 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
-![](../imgs_results/det_res_img623_sast.jpg)
+(coming soon)
**注意**:本代码库中,SAST后处理Locality-Aware NMS有python和c++两种版本,c++版速度明显快于python版。由于c++版本nms编译版本问题,只有python3.5环境下会调用c++版nms,其他情况将调用python版nms。
@@ -245,15 +245,16 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg"
执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:
-Predicts of ./doc/imgs_words/ch/word_4.jpg:['实力活力', 0.89552695]
-
+```bash
+Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.98458153)
+```
### 2. 基于CTC损失的识别模型推理
我们以 CRNN 为例,介绍基于CTC损失的识别模型推理。 Rosetta 使用方式类似,不用设置识别算法参数rec_algorithm。
-首先将 Rosetta 文本识别训练过程中保存的模型,转换成inference model。以基于Resnet34_vd骨干网络,使用MJSynth和SynthText两个英文文本识别合成数据集训练
+首先将 CRNN 文本识别训练过程中保存的模型,转换成inference model。以基于Resnet34_vd骨干网络,使用MJSynth和SynthText两个英文文本识别合成数据集训练
的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar) ),可以使用如下命令进行转换:
```
@@ -261,7 +262,7 @@ python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o G
```
-STAR-Net文本识别模型推理,可以执行如下命令:
+CRNN 文本识别模型推理,可以执行如下命令:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_crnn/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
@@ -281,7 +282,9 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png
执行命令后,上面图像的识别结果如下:
-Predicts of ./doc/imgs_words_en/word_336.png:['super', 0.9999555]
+```bash
+Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
+```
**注意**:由于上述模型是参考[DTRB](https://arxiv.org/abs/1904.01906)文本识别训练和评估流程,与超轻量级中文识别模型训练有两方面不同:
@@ -295,10 +298,10 @@ dict_character = list(self.character_str)
```
### 4. 自定义文本识别字典的推理
-如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径
+如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径,并且设置 `rec_char_type=ch`
```
-python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_char_dict_path="your text dict path"
+python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
```
@@ -313,9 +316,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" -
执行命令后,上图的预测结果为:
``` text
-2020-09-19 16:15:05,076-INFO: index: [205 206 38 39]
-2020-09-19 16:15:05,077-INFO: word : 바탕으로
-2020-09-19 16:15:05,077-INFO: score: 0.9171358942985535
+Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
```
@@ -378,4 +379,4 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --d
执行命令后,识别结果图像如下:
-![](../imgs_results/img_10.jpg)
+(coming soon)
diff --git a/doc/doc_ch/models_list.md b/doc/doc_ch/models_list.md
index c85def4efbc8abdd5eeadbd7a4641b5776694491..b281e1e736f6c3747c2ae07188dc6f87abfc67a8 100644
--- a/doc/doc_ch/models_list.md
+++ b/doc/doc_ch/models_list.md
@@ -1,4 +1,4 @@
-## OCR模型列表(V1.1,9月22日更新)
+## OCR模型列表(V2.0,2020年12月12日更新)
- [一、文本检测模型](#文本检测模型)
- [二、文本识别模型](#文本识别模型)
@@ -10,19 +10,20 @@
PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训练模型`、`slim模型`,模型区别说明如下:
|模型类型|模型格式|简介|
-|-|-|-|
-|推理模型|model、params|用于python预测引擎推理,[详情](./inference.md)|
-|训练模型、预训练模型|\*.pdmodel、\*.pdopt、\*.pdparams|训练过程中保存的checkpoints模型,保存的是模型的参数,多用于模型指标评估和恢复训练|
+|--- | --- | --- |
+|推理模型|inference.pdmodel、inference.pdiparams|用于python预测引擎推理,[详情](./inference.md)|
+|训练模型、预训练模型|\*.pdparams、\*.pdopt、\*.states |训练过程中保存的模型的参数、优化器状态和训练中间信息,多用于模型指标评估和恢复训练|
|slim模型|\*.nb|用于lite部署|
### 一、文本检测模型
+
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
-|-|-|-|-|-|
-|ch_ppocr_mobile_slim_v1.1_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|[det_mv3_db_v1.1.yml](../../configs/det/det_mv3_db_v1.1.yml)|1.4M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_infer.tar) / [slim模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_prune_opt.nb)|
-|ch_ppocr_mobile_v1.1_det|原始超轻量模型,支持中英文、多语种文本检测|[det_mv3_db_v1.1.yml](../../configs/det/det_mv3_db_v1.1.yml)|2.6M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar)|
-|ch_ppocr_server_v1.1_det|通用模型,支持中英文、多语种文本检测,比超轻量模型更大,但效果更好|[det_r18_vd_db_v1.1.yml](../../configs/det/det_r18_vd_db_v1.1.yml)|47.2M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_train.tar)|
+| --- | --- | --- | --- | --- |
+|ch_ppocr_mobile_slim_v2.0_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| |[推理模型 (coming soon)](link) / [slim模型 (coming soon)](link)|
+|ch_ppocr_mobile_v2.0_det|原始超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
+|ch_ppocr_server_v2.0_det|通用模型,支持中英文、多语种文本检测,比超轻量模型更大,但效果更好|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
@@ -30,42 +31,44 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
#### 1. 中文识别模型
+
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
-|-|-|-|-|-|
-|ch_ppocr_mobile_slim_v1.1_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml)|1.6M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_quant_opt.nb) |
-|ch_ppocr_mobile_v1.1_rec|原始超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml)|4.6M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_pre.tar) |
-|ch_ppocr_server_v1.1_rec|通用模型,支持中英文、数字识别|[rec_chinese_common_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_common_train_v1.1.yml)|105M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_pre.tar) |
+| --- | --- | --- | --- | --- |
+|ch_ppocr_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| |[推理模型 (coming soon)](link) / [slim模型 (coming soon)](link) |
+|ch_ppocr_mobile_v2.0_rec|原始超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|3.71M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
+|ch_ppocr_server_v2.0_rec|通用模型,支持中英文、数字识别|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
**说明:** `训练模型`是基于预训练模型在真实数据与竖排合成文本数据上finetune得到的模型,在真实应用场景中有着更好的表现,`预训练模型`则是直接基于全量真实数据与合成数据训练得到,更适合用于在自己的数据集上finetune。
#### 2. 英文识别模型
+
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
-|-|-|-|-|-|
-|en_ppocr_mobile_slim_v1.1_rec|slim裁剪量化版超轻量模型,支持英文、数字识别|[rec_en_lite_train.yml](../../configs/rec/multi_languages/rec_en_lite_train.yml)|0.9M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/en/en_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/en/en_ppocr_mobile_v1.1_rec_quant_opt.nb) |
-|en_ppocr_mobile_v1.1_rec|原始超轻量模型,支持英文、数字识别|[rec_en_lite_train.yml](../../configs/rec/multi_languages/rec_en_lite_train.yml)|2.0M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_train.tar) |
+| --- | --- | --- | --- | --- |
+|en_number_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持英文、数字识别|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)| |[推理模型 (coming soon )](link) / [slim模型 (coming soon)](link) |
+|en_number_mobile_v2.0_rec|原始超轻量模型,支持英文、数字识别|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.56M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
#### 3. 多语言识别模型(更多语言持续更新中...)
+
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
-|-|-|-|-|-|
-| french_ppocr_mobile_v1.1_rec |法文识别|[rec_french_lite_train.yml](../../configs/rec/multi_languages/rec_french_lite_train.yml)|2.1M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_train.tar) |
-| german_ppocr_mobile_v1.1_rec |德文识别|[rec_ger_lite_train.yml](../../configs/rec/multi_languages/rec_ger_lite_train.yml)|2.1M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_train.tar) |
-| korean_ppocr_mobile_v1.1_rec |韩文识别|[rec_korean_lite_train.yml](../../configs/rec/multi_languages/rec_korean_lite_train.yml)|3.4M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_train.tar) |
-| japan_ppocr_mobile_v1.1_rec |日文识别|[rec_japan_lite_train.yml](../../configs/rec/multi_languages/rec_japan_lite_train.yml)|3.7M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_train.tar) |
+| --- | --- | --- | --- | --- |
+| french_mobile_v2.0_rec |法文识别|[rec_french_lite_train.yml](../../configs/rec/multi_language/rec_french_lite_train.yml)|2.65M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_train.tar) |
+| german_mobile_v2.0_rec |德文识别|[rec_german_lite_train.yml](../../configs/rec/multi_language/rec_german_lite_train.yml)|2.65M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_train.tar) |
+| korean_mobile_v2.0_rec |韩文识别|[rec_korean_lite_train.yml](../../configs/rec/multi_language/rec_korean_lite_train.yml)|3.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_train.tar) |
+| japan_mobile_v2.0_rec |日文识别|[rec_japan_lite_train.yml](../../configs/rec/multi_language/rec_japan_lite_train.yml)|4.23M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_train.tar) |
### 三、文本方向分类模型
+
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
-|-|-|-|-|-|
-|ch_ppocr_mobile_v1.1_cls_quant|slim量化版模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|0.5M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_train.tar) / [slim模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_quant_opt.nb) |
-|ch_ppocr_mobile_v1.1_cls|原始模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|850kb|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar) |
+| --- | --- | --- | --- | --- |
+|ch_ppocr_mobile_slim_v2.0_cls|slim量化版模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| |[推理模型 (coming soon)](link) / [训练模型](link) / [slim模型](link) |
+|ch_ppocr_mobile_v2.0_cls|原始模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
+
+## OCR模型列表(V1.1,2020年9月22日更新)
-## OCR模型列表(V1.0,7月16日更新)
+[1.1系列模型地址](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/models_list.md)
-|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
-|-|-|-|-|-|
-|chinese_db_crnn_mobile|8.6M超轻量级中文OCR模型|[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar) |[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar) |[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
-|chinese_db_crnn_server|通用中文OCR模型|[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar) |[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar) |[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
diff --git a/doc/doc_ch/quickstart.md b/doc/doc_ch/quickstart.md
index e3d854eb8de97397fef2da768df9e94bb07ef5d8..eabf1d91cfcc5afad3b9495f63cd6379562342b9 100644
--- a/doc/doc_ch/quickstart.md
+++ b/doc/doc_ch/quickstart.md
@@ -13,8 +13,8 @@
| 模型简介 | 模型名称 |推荐场景 | 检测模型 | 方向分类器 | 识别模型 |
| ------------ | --------------- | ----------------|---- | ---------- | -------- |
-| 中英文超轻量OCR模型(8.1M) | ch_ppocr_mobile_v2.0_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) |
-| 中英文通用OCR模型(155.1M) | ch_ppocr_server_v2.0_xx |服务器端 |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) |
+| 中英文超轻量OCR模型(8.1M) | ch_ppocr_mobile_v2.0_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
+| 中英文通用OCR模型(143M) | ch_ppocr_server_v2.0_xx |服务器端 |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
* windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下
diff --git a/doc/doc_ch/whl.md b/doc/doc_ch/whl.md
index c51f32778f0e6e5069cb8d45e1632263b68569ad..587b443baf2ed92c1913b29f2dad45b812b44928 100644
--- a/doc/doc_ch/whl.md
+++ b/doc/doc_ch/whl.md
@@ -348,7 +348,7 @@ im_show.save('result.jpg')
| cls_batch_num | 进行分类时,同时前向的图片数 |30 |
| enable_mkldnn | 是否启用mkldnn | FALSE |
| use_zero_copy_run | 是否通过zero_copy_run的方式进行前向 | FALSE |
-| lang | 模型语言类型,目前支持 中文(ch)和英文(en) | ch |
+| lang | 模型语言类型,目前支持 目前支持中英文(ch)、英文(en)、法语(french)、德语(german)、韩语(korean)、日语(japan) | ch |
| det | 前向时使用启动检测 | TRUE |
| rec | 前向时是否启动识别 | TRUE |
| cls | 前向时是否启动分类 (命令行模式下使用use_angle_cls控制前向是否启动分类) | FALSE |
diff --git a/doc/doc_en/config_en.md b/doc/doc_en/config_en.md
index b8f638a6ec19f9803397e4689947c03c81daffe8..28ebb6e830369447395c661cbcc76aaf067a91d9 100644
--- a/doc/doc_en/config_en.md
+++ b/doc/doc_en/config_en.md
@@ -9,14 +9,14 @@ The following list can be viewed through `--help`
## INTRODUCTION TO GLOBAL PARAMETERS OF CONFIGURATION FILE
-Take rec_chinese_lite_train_v1.1.yml as an example
+Take rec_chinese_lite_train_v2.0.yml as an example
### Global
| Parameter | Use | Defaults | Note |
| :----------------------: | :---------------------: | :--------------: | :--------------------: |
| use_gpu | Set using GPU or not | true | \ |
| epoch_num | Maximum training epoch number | 500 | \ |
-| log_smooth_window | Sliding window size | 20 | \ |
+| log_smooth_window | Log queue length, the median value in the queue each time will be printed | 20 | \ |
| print_batch_step | Set print log interval | 10 | \ |
| save_model_dir | Set model save path | output/{算法名称} | \ |
| save_epoch_step | Set model save interval | 3 | \ |
diff --git a/doc/doc_en/inference_en.md b/doc/doc_en/inference_en.md
index ee567451aa6a7f84d770f0741146734584da24da..411a733dd062cf347d7a2e5d5d067739bda36819 100644
--- a/doc/doc_en/inference_en.md
+++ b/doc/doc_en/inference_en.md
@@ -192,7 +192,7 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
-![](../imgs_results/det_res_img_10_east.jpg)
+(coming soon)
**Note**: EAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.
@@ -214,7 +214,7 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
-![](../imgs_results/det_res_img_10_sast.jpg)
+(coming soon)
#### (2). Curved text detection model (Total-Text)
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link (coming soon)](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)), you can use the following command to convert:
@@ -231,7 +231,7 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
-![](../imgs_results/det_res_img623_sast.jpg)
+(coming soon)
**Note**: SAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.
@@ -254,8 +254,9 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg"
After executing the command, the prediction results (recognized text and score) of the above image will be printed on the screen.
-Predicts of ./doc/imgs_words/ch/word_4.jpg:['实力活力', 0.89552695]
-
+```bash
+Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.98458153)
+```
### 2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE
@@ -276,7 +277,6 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png
### 3. ATTENTION-BASED TEXT RECOGNITION MODEL INFERENCE
-![](../imgs_words_en/word_336.png)
The recognition model based on Attention loss is different from ctc, and additional recognition algorithm parameters need to be set --rec_algorithm="RARE"
After executing the command, the recognition result of the above image is as follows:
@@ -284,8 +284,13 @@ After executing the command, the recognition result of the above image is as fol
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rare/" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_algorithm="RARE"
```
-Predicts of ./doc/imgs_words_en/word_336.png:['super', 0.9999555]
+![](../imgs_words_en/word_336.png)
+After executing the command, the recognition result of the above image is as follows:
+
+```bash
+Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
+```
**Note**:Since the above model refers to [DTRB](https://arxiv.org/abs/1904.01906) text recognition training and evaluation process, it is different from the training of lightweight Chinese recognition model in two aspects:
- The image resolution used in training is different: the image resolution used in training the above model is [3,32,100], while during our Chinese model training, in order to ensure the recognition effect of long text, the image resolution used in training is [3, 32, 320]. The default shape parameter of the inference stage is the image resolution used in training phase, that is [3, 32, 320]. Therefore, when running inference of the above English model here, you need to set the shape of the recognition image through the parameter `rec_image_shape`.
@@ -299,10 +304,10 @@ dict_character = list(self.character_str)
### 4. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY
-If the chars dictionary is modified during training, you need to specify the new dictionary path by setting the parameter `rec_char_dict_path` when using your inference model to predict.
+If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`, and set `rec_char_type=ch`
```
-python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_char_dict_path="your text dict path"
+python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
```
@@ -318,9 +323,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" -
After executing the command, the prediction result of the above figure is:
``` text
-2020-09-19 16:15:05,076-INFO: index: [205 206 38 39]
-2020-09-19 16:15:05,077-INFO: word : 바탕으로
-2020-09-19 16:15:05,077-INFO: score: 0.9171358942985535
+Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
```
@@ -381,4 +384,4 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --d
After executing the command, the recognition result image is as follows:
-![](../imgs_results/img_10.jpg)
+(coming soon)
diff --git a/doc/doc_en/models_list_en.md b/doc/doc_en/models_list_en.md
index 3d3cdc1d6c2e2a52c64f6ed0fd502456271173b6..63d8c598bbe4e3b37ae47804e595438ee79905c8 100644
--- a/doc/doc_en/models_list_en.md
+++ b/doc/doc_en/models_list_en.md
@@ -1,4 +1,4 @@
-## OCR model list(V1.1, updated on 9.22)
+## OCR model list(V1.1, updated on 2020.12.12)
- [1. Text Detection Model](#Detection)
- [2. Text Recognition Model](#Recognition)
@@ -10,61 +10,62 @@
The downloadable models provided by PaddleOCR include `inference model`, `trained model`, `pre-trained model` and `slim model`. The differences between the models are as follows:
|model type|model format|description|
-|-|-|-|
-|inference model|model、params|Used for reasoning based on Python prediction engine. [detail](./inference_en.md)|
-|trained model / pre-trained model|\*.pdmodel、\*.pdopt、\*.pdparams|The checkpoints model saved in the training process, which stores the parameters of the model, mostly used for model evaluation and continuous training.|
+|--- | --- | --- |
+|inference model|inference.pdmodel、inference.pdiparams|Used for reasoning based on Python prediction engine,[detail](./inference_en.md)|
+|trained model, pre-trained model|\*.pdparams、\*.pdopt、\*.states |The checkpoints model saved in the training process, which stores the parameters of the model, mostly used for model evaluation and continuous training.|
|slim model|\*.nb|Generally used for Lite deployment|
-
### 1. Text Detection Model
-|model name|description|config|model size|download|
-|-|-|-|-|-|
-|ch_ppocr_mobile_slim_v1.1_det|Slim pruned lightweight model, supporting Chinese, English, multilingual text detection|[det_mv3_db_v1.1.yml](../../configs/det/det_mv3_db_v1.1.yml)|1.4M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_prune_opt.nb)|
-|ch_ppocr_mobile_v1.1_det|Original lightweight model, supporting Chinese, English, multilingual text detection|[det_mv3_db_v1.1.yml](../../configs/det/det_mv3_db_v1.1.yml)|2.6M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar)|
-|ch_ppocr_server_v1.1_det|General model, which is larger than the lightweight model, but achieved better performance|[det_r18_vd_db_v1.1.yml](../../configs/det/det_r18_vd_db_v1.1.yml)|47.2M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_train.tar)|
+|model name|description|config|model size|download|
+| --- | --- | --- | --- | --- |
+|ch_ppocr_mobile_slim_v2.0_det|Slim pruned lightweight model, supporting Chinese, English, multilingual text detection|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| |[inference model (coming soon)](link) / [slim model (coming soon)](link)|
+|ch_ppocr_mobile_v2.0_det|Original lightweight model, supporting Chinese, English, multilingual text detection|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
+|ch_ppocr_server_v2.0_det|General model, which is larger than the lightweight model, but achieved better performance|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
### 2. Text Recognition Model
#### Chinese Recognition Model
+
|model name|description|config|model size|download|
-|-|-|-|-|-|
-|ch_ppocr_mobile_slim_v1.1_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml)|1.6M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_quant_opt.nb) |
-|ch_ppocr_mobile_v1.1_rec|Original lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml)|4.6M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_pre.tar) |
-|ch_ppocr_server_v1.1_rec|General model, supporting Chinese, English and number recognition|[rec_chinese_common_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_common_train_v1.1.yml)|105M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_pre.tar) |
+| --- | --- | --- | --- | --- |
+|ch_ppocr_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| |[inference model (coming soon)](link) / [slim model (coming soon)](link) |
+|ch_ppocr_mobile_v2.0_rec|Original lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|3.71M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
+|ch_ppocr_server_v2.0_rec|General model, supporting Chinese, English and number recognition|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
+
**Note:** The `trained model` is finetuned on the `pre-trained model` with real data and synthsized vertical text data, which achieved better performance in real scene. The `pre-trained model` is directly trained on the full amount of real data and synthsized data, which is more suitable for finetune on your own dataset.
#### English Recognition Model
+
|model name|description|config|model size|download|
-|-|-|-|-|-|
-|en_ppocr_mobile_slim_v1.1_rec|Slim pruned and quantized lightweight model, supporting English and number recognition|[rec_en_lite_train.yml](../../configs/rec/multi_languages/rec_en_lite_train.yml)|0.9M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/en/en_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/en/en_ppocr_mobile_v1.1_rec_quant_opt.nb) |
-|en_ppocr_mobile_v1.1_rec|Original lightweight model, supporting English and number recognition|[rec_en_lite_train.yml](../../configs/rec/multi_languages/rec_en_lite_train.yml)|2.0M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_train.tar) |
+| --- | --- | --- | --- | --- |
+|en_number_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)| |[inference model (coming soon )](link) / [slim model (coming soon)](link) |
+|en_number_mobile_v2.0_rec|Original lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.56M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
#### Multilingual Recognition Model(Updating...)
-|model name|description|config|model size|download|
-|-|-|-|-|-|
-| french_ppocr_mobile_v1.1_rec |Lightweight model for French recognition|[rec_french_lite_train.yml](../../configs/rec/multi_languages/rec_french_lite_train.yml)|2.1M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_train.tar) |
-| german_ppocr_mobile_v1.1_rec |German model for French recognition|[rec_ger_lite_train.yml](../../configs/rec/multi_languages/rec_ger_lite_train.yml)|2.1M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_train.tar) |
-| korean_ppocr_mobile_v1.1_rec |Lightweight model for Korean recognition|[rec_korean_lite_train.yml](../../configs/rec/multi_languages/rec_korean_lite_train.yml)|3.4M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_train.tar) |
-| japan_ppocr_mobile_v1.1_rec |Lightweight model for Japanese recognition|[rec_japan_lite_train.yml](../../configs/rec/multi_languages/rec_japan_lite_train.yml)|3.7M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_train.tar) |
+|model name|description|config|model size|download|
+| --- | --- | --- | --- | --- |
+| french_mobile_v2.0_rec |Lightweight model for French recognition|[rec_french_lite_train.yml](../../configs/rec/multi_language/rec_french_lite_train.yml)|2.65M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_train.tar) |
+| german_mobile_v2.0_rec |Lightweight model for French recognition|[rec_german_lite_train.yml](../../configs/rec/multi_language/rec_german_lite_train.yml)|2.65M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_train.tar) |
+| korean_mobile_v2.0_rec |Lightweight model for Korean recognition|[rec_korean_lite_train.yml](../../configs/rec/multi_language/rec_korean_lite_train.yml)|3.9M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_train.tar) |
+| japan_mobile_v2.0_rec |Lightweight model for Japanese recognition|[rec_japan_lite_train.yml](../../configs/rec/multi_language/rec_japan_lite_train.yml)|4.23M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_train.tar) |
### 3. Text Angle Classification Model
+
|model name|description|config|model size|download|
-|-|-|-|-|-|
-|ch_ppocr_mobile_v1.1_cls_quant|Slim quantized model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|0.5M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_train.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_quant_opt.nb) |
-|ch_ppocr_mobile_v1.1_cls|Original model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|850kb|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar) |
+| --- | --- | --- | --- | --- |
+|ch_ppocr_mobile_slim_v2.0_cls|Slim quantized model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| |[inference model (coming soon)](link) / [trained model](link) / [slim model](link) |
+|ch_ppocr_mobile_v2.0_cls|Original model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
+
+## OCR model list (V1.1,updated on 2020.9.22)
-## OCR model list(V1.0, updated on 7.16)
-|model name|description|detection model|recognition model|recognition model supporting space recognition|
-|-|-|-|-|-|
-|chinese_db_crnn_mobile|8.6M lightweight OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar) | [inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar) |[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
-|chinese_db_crnn_server|General OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar) | [inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar) |[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
+[1.1 series model address](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/models_list.md)
diff --git a/doc/doc_en/quickstart_en.md b/doc/doc_en/quickstart_en.md
index 6b3f2db0910402e3f8bb2565bd9f6b3319f200ab..e351ecc650d621b1da5f34dd941eaf6fb3094402 100644
--- a/doc/doc_en/quickstart_en.md
+++ b/doc/doc_en/quickstart_en.md
@@ -13,8 +13,8 @@ The detection and recognition models on the mobile and server sides are as follo
| Model introduction | Model name | Recommended scene | Detection model | Direction Classifier | Recognition model |
| ------------ | --------------- | ----------------|---- | ---------- | -------- |
-| Ultra-lightweight Chinese OCR model(8.1M) | ch_ppocr_mobile_v2.0_xx |Mobile-side/Server-side|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) |
-| Universal Chinese OCR model(155.1M) | ch_ppocr_server_v2.0_xx |Server-side |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) |
+| Ultra-lightweight Chinese OCR model (8.1M) | ch_ppocr_mobile_v2.0_xx |Mobile-side/Server-side|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
+| Universal Chinese OCR model (143M) | ch_ppocr_server_v2.0_xx |Server-side |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
* If `wget` is not installed in the windows environment, you can copy the link to the browser to download when downloading the model, then uncompress it and place it in the corresponding directory.
diff --git a/doc/imgs_results/2.jpg b/doc/imgs_results/2.jpg
index 201ef9ee492702118cd1638ed8a0b832c1c6d9ed..99f7e63b02556506dadf8d838eee22534d21d82c 100644
Binary files a/doc/imgs_results/2.jpg and b/doc/imgs_results/2.jpg differ
diff --git a/doc/imgs_results/det_res_2.jpg b/doc/imgs_results/det_res_2.jpg
index aebcd8ccaca02db7ed4a09cd63ade422abc4735f..c0ae501a7aff7807f53b743745005653775b0d03 100644
Binary files a/doc/imgs_results/det_res_2.jpg and b/doc/imgs_results/det_res_2.jpg differ
diff --git a/doc/imgs_results/det_res_img_10_db.jpg b/doc/imgs_results/det_res_img_10_db.jpg
index bde1585cb50137ae1fd33ce7edfa59e7224ddc96..6af89f6bb32191c361c439c9d26e0239b5392fd9 100644
Binary files a/doc/imgs_results/det_res_img_10_db.jpg and b/doc/imgs_results/det_res_img_10_db.jpg differ
diff --git a/paddleocr.py b/paddleocr.py
index 17306e79fe3c94e7f885de408a6c0f6c060a67da..1d8cd254644af77ea965d3fb5905f87a9b141e52 100644
--- a/paddleocr.py
+++ b/paddleocr.py
@@ -35,44 +35,45 @@ __all__ = ['PaddleOCR']
model_urls = {
'det':
- 'https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar',
+ 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar',
'rec': {
'ch': {
'url':
- 'https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar',
+ 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/ppocr_keys_v1.txt'
},
'en': {
'url':
- 'https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_infer.tar',
- 'dict_path': './ppocr/utils/ic15_dict.txt'
+ 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar',
+ 'dict_path': './ppocr/utils/dict/en_dict.txt'
},
'french': {
'url':
- 'https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_infer.tar',
+ 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/french_dict.txt'
},
'german': {
'url':
- 'https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_infer.tar',
+ 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/german_dict.txt'
},
'korean': {
'url':
- 'https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_infer.tar',
+ 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/korean_dict.txt'
},
'japan': {
'url':
- 'https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_infer.tar',
+ 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/japan_dict.txt'
}
},
'cls':
- 'https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar'
+ 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar'
}
SUPPORT_DET_MODEL = ['DB']
+VERSION = 2.0
SUPPORT_REC_MODEL = ['CRNN']
BASE_DIR = os.path.expanduser("~/.paddleocr/")
@@ -94,20 +95,24 @@ def download_with_progressbar(url, save_path):
def maybe_download(model_storage_directory, url):
# using custom model
- if not os.path.exists(os.path.join(
- model_storage_directory, 'model')) or not os.path.exists(
- os.path.join(model_storage_directory, 'params')):
+ tar_file_name_list = [
+ 'inference.pdiparams', 'inference.pdiparams.info', 'inference.pdmodel'
+ ]
+ if not os.path.exists(
+ os.path.join(model_storage_directory, 'inference.pdiparams')
+ ) or not os.path.exists(
+ os.path.join(model_storage_directory, 'inference.pdmodel')):
tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
print('download {} to {}'.format(url, tmp_path))
os.makedirs(model_storage_directory, exist_ok=True)
download_with_progressbar(url, tmp_path)
with tarfile.open(tmp_path, 'r') as tarObj:
for member in tarObj.getmembers():
- if "model" in member.name:
- filename = 'model'
- elif "params" in member.name:
- filename = 'params'
- else:
+ filename = None
+ for tar_file_name in tar_file_name_list:
+ if tar_file_name in member.name:
+ filename = tar_file_name
+ if filename is None:
continue
file = tarObj.extractfile(member)
with open(
@@ -176,43 +181,43 @@ def parse_args(mMain=True, add_help=True):
parser.add_argument("--use_angle_cls", type=str2bool, default=False)
return parser.parse_args()
else:
- return argparse.Namespace(use_gpu=True,
- ir_optim=True,
- use_tensorrt=False,
- gpu_mem=8000,
- image_dir='',
- det_algorithm='DB',
- det_model_dir=None,
- det_limit_side_len=960,
- det_limit_type='max',
- det_db_thresh=0.3,
- det_db_box_thresh=0.5,
- det_db_unclip_ratio=2.0,
- det_east_score_thresh=0.8,
- det_east_cover_thresh=0.1,
- det_east_nms_thresh=0.2,
- rec_algorithm='CRNN',
- rec_model_dir=None,
- rec_image_shape="3, 32, 320",
- rec_char_type='ch',
- rec_batch_num=30,
- max_text_length=25,
- rec_char_dict_path=None,
- use_space_char=True,
- drop_score=0.5,
- cls_model_dir=None,
- cls_image_shape="3, 48, 192",
- label_list=['0', '180'],
- cls_batch_num=30,
- cls_thresh=0.9,
- enable_mkldnn=False,
- use_zero_copy_run=False,
- use_pdserving=False,
- lang='ch',
- det=True,
- rec=True,
- use_angle_cls=False
- )
+ return argparse.Namespace(
+ use_gpu=True,
+ ir_optim=True,
+ use_tensorrt=False,
+ gpu_mem=8000,
+ image_dir='',
+ det_algorithm='DB',
+ det_model_dir=None,
+ det_limit_side_len=960,
+ det_limit_type='max',
+ det_db_thresh=0.3,
+ det_db_box_thresh=0.5,
+ det_db_unclip_ratio=2.0,
+ det_east_score_thresh=0.8,
+ det_east_cover_thresh=0.1,
+ det_east_nms_thresh=0.2,
+ rec_algorithm='CRNN',
+ rec_model_dir=None,
+ rec_image_shape="3, 32, 320",
+ rec_char_type='ch',
+ rec_batch_num=30,
+ max_text_length=25,
+ rec_char_dict_path=None,
+ use_space_char=True,
+ drop_score=0.5,
+ cls_model_dir=None,
+ cls_image_shape="3, 48, 192",
+ label_list=['0', '180'],
+ cls_batch_num=30,
+ cls_thresh=0.9,
+ enable_mkldnn=False,
+ use_zero_copy_run=False,
+ use_pdserving=False,
+ lang='ch',
+ det=True,
+ rec=True,
+ use_angle_cls=False)
class PaddleOCR(predict_system.TextSystem):
@@ -228,19 +233,21 @@ class PaddleOCR(predict_system.TextSystem):
lang = postprocess_params.lang
assert lang in model_urls[
'rec'], 'param lang must in {}, but got {}'.format(
- model_urls['rec'].keys(), lang)
+ model_urls['rec'].keys(), lang)
if postprocess_params.rec_char_dict_path is None:
postprocess_params.rec_char_dict_path = model_urls['rec'][lang][
'dict_path']
# init model dir
if postprocess_params.det_model_dir is None:
- postprocess_params.det_model_dir = os.path.join(BASE_DIR, 'det')
+ postprocess_params.det_model_dir = os.path.join(
+ BASE_DIR, '{}/det'.format(VERSION))
if postprocess_params.rec_model_dir is None:
postprocess_params.rec_model_dir = os.path.join(
- BASE_DIR, 'rec/{}'.format(lang))
+ BASE_DIR, '{}/rec/{}'.format(VERSION, lang))
if postprocess_params.cls_model_dir is None:
- postprocess_params.cls_model_dir = os.path.join(BASE_DIR, 'cls')
+ postprocess_params.cls_model_dir = os.path.join(
+ BASE_DIR, '{}/cls'.format(VERSION))
print(postprocess_params)
# download model
maybe_download(postprocess_params.det_model_dir, model_urls['det'])
diff --git a/tools/infer/predict_det.py b/tools/infer/predict_det.py
index 5be27339dbae07c8d99fe442f18e64288d831f79..43db20d212019523076203976866b89dad6b5ca6 100755
--- a/tools/infer/predict_det.py
+++ b/tools/infer/predict_det.py
@@ -186,4 +186,4 @@ if __name__ == "__main__":
cv2.imwrite(img_path, src_im)
logger.info("The visualized image saved in {}".format(img_path))
if count > 1:
- logger.info("Avg Time:", total_time / (count - 1))
+ logger.info("Avg Time: {}".format(total_time / (count - 1)))