diff --git a/ppstructure/vqa/README.md b/ppstructure/vqa/README.md index e3a10671ddb6494eb15073e7ac007aa1e8e6a32a..66cc5b933b72beaa1c8beb548a4f1baffc91a531 100644 --- a/ppstructure/vqa/README.md +++ b/ppstructure/vqa/README.md @@ -192,7 +192,7 @@ Finally, `precision`, `recall`, `hmean` and other indicators will be printed Use the following command to complete the series prediction of `OCR engine + SER`, taking the pretrained SER model as an example: ```shell -CUDA_VISIBLE_DEVICES=0 python3 tools/infer_vqa_token_ser.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=pretrain/ser_LayoutXLM_xfun_zh/Global.infer_img=doc/vqa/input/zh_val_42.jpg +CUDA_VISIBLE_DEVICES=0 python3 tools/infer_vqa_token_ser.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=pretrain/ser_LayoutXLM_xfun_zh/ Global.infer_img=doc/vqa/input/zh_val_42.jpg ```` Finally, the prediction result visualization image and the prediction result text file will be saved in the directory configured by the `config.Global.save_res_path` field. The prediction result text file is named `infer_results.txt`.