提交 38f27a53 编写于 作者: W WenmuZhou

merge upstream

......@@ -32,12 +32,10 @@ class SimpleDataSet(Dataset):
self.delimiter = dataset_config.get('delimiter', '\t')
label_file_list = dataset_config.pop('label_file_list')
data_source_num = len(label_file_list)
if data_source_num == 1:
ratio_list = [1.0]
else:
ratio_list = dataset_config.pop('ratio_list')
ratio_list = dataset_config.get("ratio_list", [1.0])
if isinstance(ratio_list, (float, int)):
ratio_list = [float(ratio_list)] * len(data_source_num)
assert sum(ratio_list) == 1, "The sum of the ratio_list should be 1."
assert len(
ratio_list
) == data_source_num, "The length of ratio_list should be the same as the file_list."
......@@ -45,62 +43,32 @@ class SimpleDataSet(Dataset):
self.do_shuffle = loader_config['shuffle']
logger.info("Initialize indexs of datasets:%s" % label_file_list)
self.data_lines_list, data_num_list = self.get_image_info_list(
label_file_list)
self.data_idx_order_list = self.dataset_traversal(
data_num_list, ratio_list, batch_size)
self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
self.data_idx_order_list = list(range(len(self.data_lines)))
if mode.lower() == "train":
self.shuffle_data_random()
self.ops = create_operators(dataset_config['transforms'], global_config)
def get_image_info_list(self, file_list):
def get_image_info_list(self, file_list, ratio_list):
if isinstance(file_list, str):
file_list = [file_list]
data_lines_list = []
data_num_list = []
for file in file_list:
data_lines = []
for idx, file in enumerate(file_list):
with open(file, "rb") as f:
lines = f.readlines()
data_lines_list.append(lines)
data_num_list.append(len(lines))
return data_lines_list, data_num_list
def dataset_traversal(self, data_num_list, ratio_list, batch_size):
select_num_list = []
dataset_num = len(data_num_list)
for dno in range(dataset_num):
select_num = round(batch_size * ratio_list[dno])
select_num = max(select_num, 1)
select_num_list.append(select_num)
data_idx_order_list = []
cur_index_sets = [0] * dataset_num
while True:
finish_read_num = 0
for dataset_idx in range(dataset_num):
cur_index = cur_index_sets[dataset_idx]
if cur_index >= data_num_list[dataset_idx]:
finish_read_num += 1
else:
select_num = select_num_list[dataset_idx]
for sno in range(select_num):
cur_index = cur_index_sets[dataset_idx]
if cur_index >= data_num_list[dataset_idx]:
break
data_idx_order_list.append((dataset_idx, cur_index))
cur_index_sets[dataset_idx] += 1
if finish_read_num == dataset_num:
break
return data_idx_order_list
lines = random.sample(lines,
round(len(lines) * ratio_list[idx]))
data_lines.extend(lines)
return data_lines
def shuffle_data_random(self):
if self.do_shuffle:
for dno in range(len(self.data_lines_list)):
random.shuffle(self.data_lines_list[dno])
random.shuffle(self.data_lines)
return
def __getitem__(self, idx):
dataset_idx, file_idx = self.data_idx_order_list[idx]
data_line = self.data_lines_list[dataset_idx][file_idx]
file_idx = self.data_idx_order_list[idx]
data_line = self.data_lines[file_idx]
try:
data_line = data_line.decode('utf-8')
substr = data_line.strip("\n").split(self.delimiter)
......
......@@ -23,7 +23,7 @@ import copy
import numpy as np
import math
import time
import traceback
import paddle.fluid as fluid
import tools.infer.utility as utility
......@@ -106,10 +106,10 @@ class TextClassifier(object):
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
self.predictor.run([norm_img_batch])
prob_out = self.output_tensors[0].copy_to_cpu()
cls_res = self.postprocess_op(prob_out)
cls_result = self.postprocess_op(prob_out)
elapse += time.time() - starttime
for rno in range(len(cls_res)):
label, score = cls_res[rno]
for rno in range(len(cls_result)):
label, score = cls_result[rno]
cls_res[indices[beg_img_no + rno]] = [label, score]
if '180' in label and score > self.cls_thresh:
img_list[indices[beg_img_no + rno]] = cv2.rotate(
......@@ -133,8 +133,8 @@ def main(args):
img_list.append(img)
try:
img_list, cls_res, predict_time = text_classifier(img_list)
except Exception as e:
print(e)
except:
logger.info(traceback.format_exc())
logger.info(
"ERROR!!!! \n"
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
......@@ -143,10 +143,10 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit()
for ino in range(len(img_list)):
print("Predicts of {}:{}".format(valid_image_file_list[ino], cls_res[
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], cls_res[
ino]))
print("Total predict time for {} images, cost: {:.3f}".format(
logger.info("Total predict time for {} images, cost: {:.3f}".format(
len(img_list), predict_time))
if __name__ == "__main__":
if __name__ == "__main__":
main(utility.parse_args())
......@@ -178,11 +178,12 @@ if __name__ == "__main__":
if count > 0:
total_time += elapse
count += 1
print("Predict time of {}: {}".format(image_file, elapse))
logger.info("Predict time of {}: {}".format(image_file, elapse))
src_im = utility.draw_text_det_res(dt_boxes, image_file)
img_name_pure = os.path.split(image_file)[-1]
img_path = os.path.join(draw_img_save,
"det_res_{}".format(img_name_pure))
cv2.imwrite(img_path, src_im)
logger.info("The visualized image saved in {}".format(img_path))
if count > 1:
print("Avg Time:", total_time / (count - 1))
logger.info("Avg Time:", total_time / (count - 1))
......@@ -22,7 +22,7 @@ import cv2
import numpy as np
import math
import time
import traceback
import paddle.fluid as fluid
import tools.infer.utility as utility
......@@ -135,8 +135,8 @@ def main(args):
img_list.append(img)
try:
rec_res, predict_time = text_recognizer(img_list)
except Exception as e:
print(e)
except:
logger.info(traceback.format_exc())
logger.info(
"ERROR!!!! \n"
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
......@@ -145,9 +145,9 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit()
for ino in range(len(img_list)):
print("Predicts of {}:{}".format(valid_image_file_list[ino], rec_res[
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], rec_res[
ino]))
print("Total predict time for {} images, cost: {:.3f}".format(
logger.info("Total predict time for {} images, cost: {:.3f}".format(
len(img_list), predict_time))
......
......@@ -23,17 +23,21 @@ import numpy as np
import time
from PIL import Image
import tools.infer.utility as utility
from tools.infer.utility import draw_ocr
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
import tools.infer.predict_cls as predict_cls
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
from tools.infer.utility import draw_ocr_box_txt
class TextSystem(object):
def __init__(self, args):
self.text_detector = predict_det.TextDetector(args)
self.text_recognizer = predict_rec.TextRecognizer(args)
self.use_angle_cls = args.use_angle_cls
if self.use_angle_cls:
self.text_classifier = predict_cls.TextClassifier(args)
def get_rotate_crop_image(self, img, points):
'''
......@@ -72,12 +76,13 @@ class TextSystem(object):
bbox_num = len(img_crop_list)
for bno in range(bbox_num):
cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
print(bno, rec_res[bno])
logger.info(bno, rec_res[bno])
def __call__(self, img):
ori_im = img.copy()
dt_boxes, elapse = self.text_detector(img)
print("dt_boxes num : {}, elapse : {}".format(len(dt_boxes), elapse))
logger.info("dt_boxes num : {}, elapse : {}".format(
len(dt_boxes), elapse))
if dt_boxes is None:
return None, None
img_crop_list = []
......@@ -88,8 +93,15 @@ class TextSystem(object):
tmp_box = copy.deepcopy(dt_boxes[bno])
img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
img_crop_list.append(img_crop)
if self.use_angle_cls:
img_crop_list, angle_list, elapse = self.text_classifier(
img_crop_list)
logger.info("cls num : {}, elapse : {}".format(
len(img_crop_list), elapse))
rec_res, elapse = self.text_recognizer(img_crop_list)
print("rec_res num : {}, elapse : {}".format(len(rec_res), elapse))
logger.info("rec_res num : {}, elapse : {}".format(
len(rec_res), elapse))
# self.print_draw_crop_rec_res(img_crop_list, rec_res)
return dt_boxes, rec_res
......@@ -119,7 +131,8 @@ def main(args):
image_file_list = get_image_file_list(args.image_dir)
text_sys = TextSystem(args)
is_visualize = True
tackle_img_num = 0
font_path = args.vis_font_path
drop_score = args.drop_score
for image_file in image_file_list:
img, flag = check_and_read_gif(image_file)
if not flag:
......@@ -128,20 +141,16 @@ def main(args):
logger.info("error in loading image:{}".format(image_file))
continue
starttime = time.time()
tackle_img_num += 1
if not args.use_gpu and args.enable_mkldnn and tackle_img_num % 30 == 0:
text_sys = TextSystem(args)
dt_boxes, rec_res = text_sys(img)
elapse = time.time() - starttime
print("Predict time of %s: %.3fs" % (image_file, elapse))
logger.info("Predict time of %s: %.3fs" % (image_file, elapse))
drop_score = 0.5
dt_num = len(dt_boxes)
for dno in range(dt_num):
text, score = rec_res[dno]
if score >= drop_score:
text_str = "%s, %.3f" % (text, score)
print(text_str)
logger.info(text_str)
if is_visualize:
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
......@@ -149,15 +158,20 @@ def main(args):
txts = [rec_res[i][0] for i in range(len(rec_res))]
scores = [rec_res[i][1] for i in range(len(rec_res))]
draw_img = draw_ocr(
image, boxes, txts, scores, drop_score=drop_score)
draw_img = draw_ocr_box_txt(
image,
boxes,
txts,
scores,
drop_score=drop_score,
font_path=font_path)
draw_img_save = "./inference_results/"
if not os.path.exists(draw_img_save):
os.makedirs(draw_img_save)
cv2.imwrite(
os.path.join(draw_img_save, os.path.basename(image_file)),
draw_img[:, :, ::-1])
print("The visualized image saved in {}".format(
logger.info("The visualized image saved in {}".format(
os.path.join(draw_img_save, os.path.basename(image_file))))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册