提交 36f17458 编写于 作者: A an1018

update doc

上级 357ab78f
......@@ -10,11 +10,14 @@
<a name="1"></a>
## 1. 版面分析模型
|模型名称|模型简介|推理模型大小|下载地址|
| --- | --- | --- | --- |
| picodet_lcnet_x1_0_fgd_layout | PubLayNet 数据集训练的版面分析模型,可以划分**文字、标题、表格、图片以及列表**5类区域 | 9.7M | [推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout.pdparams) |
| picodet_lcnet_x1_0_fgd_layout_cdla | CDLA数据集训练的版面分析模型,可以划分为**表格、图片、图片标题、表格、表格标题、页眉、脚本、引用、公式**10类区域 | 9.7M | [推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla.pdparams) |
| picodet_lcnet_x1_0_fgd_layout_table | 表格数据集训练的版面分析模型,只能检测表格 | 9.7M | [推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_table_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_table.pdparams) |
|模型名称|模型简介|推理模型大小|下载地址|dict path|
| --- | --- | --- | --- | --- |
| picodet_lcnet_x1_0_fgd_layout | 基于PicoDet LCNet_x1_0和FGD蒸馏在PubLayNet 数据集训练的英文版面分析模型,可以划分**文字、标题、表格、图片以及列表**5类区域 | 9.7M | [推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout.pdparams) | [PubLayNet dict](../../ppocr/utils/dict/layout_dict/layout_publaynet_dict.txt) |
| ppyolov2_r50vd_dcn_365e_publaynet | 基于PP-YOLOv2在PubLayNet数据集上训练的英文版面分析模型 | 221M | [推理模型](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_publaynet.tar) / [训练模型](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_publaynet_pretrained.pdparams) | 同上 |
| picodet_lcnet_x1_0_fgd_layout_cdla | CDLA数据集训练的中文版面分析模型,可以划分为**表格、图片、图片标题、表格、表格标题、页眉、脚本、引用、公式**10类区域 | 9.7M | [推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla.pdparams) | [CDLA dict](../../ppocr/utils/dict/layout_dict/layout_cdla_dict.txt) |
| picodet_lcnet_x1_0_fgd_layout_table | 表格数据集训练的版面分析模型,支持中英文文档表格区域的检测 | 9.7M | [推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_table_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_table.pdparams) | [Table dict](../../ppocr/utils/dict/layout_dict/layout_table_dict.txt) |
| ppyolov2_r50vd_dcn_365e_tableBank_word | 基于PP-YOLOv2在TableBank Word 数据集训练的版面分析模型,支持英文文档表格区域的检测 | 221M | [推理模型](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_word.tar) | 同上 |
| ppyolov2_r50vd_dcn_365e_tableBank_latex | 基于PP-YOLOv2在TableBank Latex数据集训练的版面分析模型,支持英文文档表格区域的检测 | 221M | [推理模型](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_latex.tar) | 同上 |
<a name="2"></a>
......
......@@ -6,15 +6,18 @@
- [2.2 Table Recognition](#22-table-recognition)
- [3. KIE](#3-kie)
<a name="1"></a>
## 1. Layout Analysis
|model name| description |download|
| --- |---------------------------------------------------------------------------------------------------------------------------------------------------------| --- |
| picodet_lcnet_x1_0_fgd_layout | The layout analysis model trained on the PubLayNet dataset, the model can recognition 5 types of areas such as **Text, Title, Table, Picture and List** | [inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout.pdparams) |
| picodet_lcnet_x1_0_fgd_layout_cdla | The layout analysis model trained on the CDLA dataset, the model can recognition 10 types of areas such as **Table、Figure、Figure caption、Table、Table caption、Header、Footer、Reference、Equation** | [inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla.pdparams) |
| picodet_lcnet_x1_0_fgd_layout_table | The layout analysis model trained on the table dataset, the model can only detect tables | [inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_table_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_table.pdparams) |
|model name| description | inference model size |download|dict path|
| --- |---------------------------------------------------------------------------------------------------------------------------------------------------------| --- | --- | --- |
| picodet_lcnet_x1_0_fgd_layout | The layout analysis English model trained on the PubLayNet dataset based on PicoDet LCNet_x1_0 and FGD . the model can recognition 5 types of areas such as **Text, Title, Table, Picture and List** | 9.7M | [inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout.pdparams) | [PubLayNet dict](../../ppocr/utils/dict/layout_dict/layout_publaynet_dict.txt) |
| ppyolov2_r50vd_dcn_365e_publaynet | The layout analysis English model trained on the PubLayNet dataset based on PP-YOLOv2 | 221M | [inference_moel]](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_publaynet.tar) / [trained model](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_publaynet_pretrained.pdparams) | sme as above |
| picodet_lcnet_x1_0_fgd_layout_cdla | The layout analysis Chinese model trained on the CDLA dataset, the model can recognition 10 types of areas such as **Table、Figure、Figure caption、Table、Table caption、Header、Footer、Reference、Equation** | 9.7M | [inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla.pdparams) | [CDLA dict](../../ppocr/utils/dict/layout_dict/layout_cdla_dict.txt) |
| picodet_lcnet_x1_0_fgd_layout_table | The layout analysis model trained on the table dataset, the model can detect tables in Chinese and English documents | 9.7M | [inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_table_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_table.pdparams) | [Table dict](../../ppocr/utils/dict/layout_dict/layout_table_dict.txt) |
| ppyolov2_r50vd_dcn_365e_tableBank_word | The layout analysis model trained on the TableBank Word dataset based on PP-YOLOv2, the model can detect tables in English documents | 221M | [inference model](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_word.tar) | same as above |
| ppyolov2_r50vd_dcn_365e_tableBank_latex | The layout analysis model trained on the TableBank Latex dataset based on PP-YOLOv2, the model can detect tables in English documents | 221M | [inference model](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_latex.tar) | same as above |
<a name="2"></a>
## 2. OCR and Table Recognition
......
......@@ -8,14 +8,16 @@
- [2.1.3 版面分析](#213-版面分析)
- [2.1.4 表格识别](#214-表格识别)
- [2.1.5 DocVQA](#215-dockie)
- [2.1.6 版面恢复](#216-版面恢复)
- [2.2 代码使用](#22-代码使用)
- [2.2.1 图像方向分类版面分析表格识别](#221-图像方向分类版面分析表格识别)
- [2.2.2 版面分析+表格识别](#222-版面分析表格识别)
- [2.2.3 版面分析](#223-版面分析)
- [2.2.4 表格识别](#224-表格识别)
- [2.2.5 DocVQA](#225-dockie)
- [2.2.6 版面恢复](#226-版面恢复)
- [2.3 返回结果说明](#23-返回结果说明)
- [2.3.1 版面分+表格识别](#231-版面分析表格识别)
- [2.3.1 版面分+表格识别](#231-版面分析表格识别)
- [2.3.2 DocVQA](#232-dockie)
- [2.4 参数说明](#24-参数说明)
......@@ -24,11 +26,12 @@
## 1. 安装依赖包
```bash
# 安装 paddleocr,推荐使用2.5+版本
pip3 install "paddleocr>=2.5"
# 安装 paddleocr,推荐使用2.6版本
pip3 install "paddleocr>=2.6"
# 安装 DocVQA依赖包paddlenlp(如不需要DocVQA功能,可跳过)
pip install paddlenlp
pip3 install paddlenlp
# 安装 图像方向分类依赖包paddleclas(如不需要图像方向分类功能,可跳过)
pip3 install paddleclas
```
<a name="2"></a>
......@@ -62,15 +65,25 @@ paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/table.jpg --type=structur
```
<a name="215"></a>
#### 2.1.5 DocVQA
请参考:[文档视觉问答](../kie/README.md)
<a name="216"></a>
#### 2.1.6 版面恢复
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --recovery=true
```
<a name="22"></a>
### 2.2 代码使用
<a name="221"></a>
#### 2.2.1 图像方向分类版面分析表格识别
#### 2.2.1 图像方向分类+版面分析+表格识别
```python
import os
......@@ -149,6 +162,7 @@ for line in result:
```
<a name="224"></a>
#### 2.2.4 表格识别
```python
......@@ -174,6 +188,33 @@ for line in result:
请参考:[文档视觉问答](../kie/README.md)
<a name="226"></a>
#### 2.2.6 版面恢复
```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
from paddelocr.ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx
table_engine = PPStructure(layout=False, show_log=True)
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
h, w, _ = img.shape
res = sorted_layout_boxes(res, w)
convert_info_docx(img, result, save_folder, os.path.basename(img_path).split('.')[0])
```
<a name="23"></a>
### 2.3 返回结果说明
PP-Structure的返回结果为一个dict组成的list,示例如下
......@@ -235,6 +276,7 @@ dict 里各个字段说明如下
| table | 前向中是否执行表格识别 | True |
| ocr | 对于版面分析中的非表格区域,是否执行ocr。当layout为False时会被自动设置为False| True |
| recovery | 前向中是否执行版面恢复| False |
| save_pdf | 版面恢复导出docx文件的同时,是否导出pdf文件 | False |
| structure_version | 模型版本,可选 PP-structure和PP-structurev2 | PP-structure |
大部分参数和PaddleOCR whl包保持一致,见 [whl包文档](../../doc/doc_ch/whl.md)
......@@ -8,12 +8,14 @@
- [2.1.3 layout analysis](#213-layout-analysis)
- [2.1.4 table recognition](#214-table-recognition)
- [2.1.5 DocVQA](#215-dockie)
- [2.1.6 layout recovery](#216-layout-recovery)
- [2.2 Use by code](#22-use-by-code)
- [2.2.1 image orientation + layout analysis + table recognition](#221-image-orientation--layout-analysis--table-recognition)
- [2.2.2 layout analysis + table recognition](#222-layout-analysis--table-recognition)
- [2.2.3 layout analysis](#223-layout-analysis)
- [2.2.4 table recognition](#224-table-recognition)
- [2.2.5 DocVQA](#225-dockie)
- [2.2.6 layout recovery](#226-layout-recovery)
- [2.3 Result description](#23-result-description)
- [2.3.1 layout analysis + table recognition](#231-layout-analysis--table-recognition)
- [2.3.2 DocVQA](#232-dockie)
......@@ -24,10 +26,12 @@
## 1. Install package
```bash
# Install paddleocr, version 2.5+ is recommended
pip3 install "paddleocr>=2.5"
# Install paddleocr, version 2.6 is recommended
pip3 install "paddleocr>=2.6"
# Install the DocVQA dependency package paddlenlp (if you do not use the DocVQA, you can skip it)
pip install paddlenlp
pip3 install paddlenlp
# Install the image direction classification dependency package paddleclas (if you do not use the image direction classification, you can skip it)
pip3 install paddleclas
```
......@@ -66,6 +70,12 @@ paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/table.jpg --type=structur
Please refer to: [Documentation Visual Q&A](../kie/README.md) .
<a name="216"></a>
#### 2.1.6 layout recovery
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --recovery=true
```
<a name="22"></a>
### 2.2 Use by code
......@@ -174,6 +184,32 @@ for line in result:
Please refer to: [Documentation Visual Q&A](../kie/README.md) .
<a name="226"></a>
#### 2.2.6 layout recovery
```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
from paddelocr.ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx
table_engine = PPStructure(layout=False, show_log=True)
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
h, w, _ = img.shape
res = sorted_layout_boxes(res, w)
convert_info_docx(img, result, save_folder, os.path.basename(img_path).split('.')[0])
```
<a name="23"></a>
### 2.3 Result description
......@@ -235,6 +271,7 @@ Please refer to: [Documentation Visual Q&A](../kie/README.md) .
| table | Whether to perform table recognition in forward | True |
| ocr | Whether to perform ocr for non-table areas in layout analysis. When layout is False, it will be automatically set to False| True |
| recovery | Whether to perform layout recovery in forward| False |
| save_pdf | Whether to convert docx to pdf when recovery| False |
| structure_version | Structure version, optional PP-structure and PP-structurev2 | PP-structure |
Most of the parameters are consistent with the PaddleOCR whl package, see [whl package documentation](../../doc/doc_en/whl.md)
......@@ -175,7 +175,7 @@ cd pretrained_model
wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_layout.pdparams
```
下载更多[版面分析模型](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/docs/models_list.md#1-%E7%89%88%E9%9D%A2%E5%88%86%E6%9E%90%E6%A8%A1%E5%9E%8B)(中文CDLA数据集预训练模型、表格预训练模型)
下载更多[版面分析模型](../docs/models_list.md)(中文CDLA数据集预训练模型、表格预训练模型)
### 4.1. 启动训练
......
......@@ -6,6 +6,8 @@ English | [简体中文](README_ch.md)
- [2.1 Installation dependencies](#2.1)
- [2.2 Install PaddleOCR](#2.2)
- [3. Quick Start](#3)
- [3.1 Download models](#3.1)
- [3.2 Layout recovery](#3.2)
<a name="1"></a>
......@@ -17,8 +19,9 @@ Layout recovery combines [layout analysis](../layout/README.md)、[table recogni
The following figure shows the result:
<div align="center">
<img src="../docs/table/recovery.jpg" width = "700" />
<img src="../docs/recovery/recovery.jpg" width = "700" />
</div>
<a name="2"></a>
## 2. Install
......@@ -68,11 +71,11 @@ python3 -m pip install -r ppstructure/recovery/requirements.txt
## 3. Quick Start
<a name="3.1"></a>
### 3.1 下载模型
### 3.1 Download models
If input is English document, download English models:
```python
```bash
cd PaddleOCR/ppstructure
# download model
......@@ -91,7 +94,7 @@ If input is Chinese document,download Chinese models:
[Chinese and English ultra-lightweight PP-OCRv3 model](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/README.md#pp-ocr-series-model-listupdate-on-september-8th)、[表格识别模型](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/docs/models_list.md#22-表格识别模型)、[版面分析模型](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/docs/models_list.md#1-版面分析模型)
<a name="3.2"></a>
### 3.2 版面恢复
### 3.2 Layout recovery
```bash
......
......@@ -78,7 +78,7 @@ python3 -m pip install -r ppstructure/recovery/requirements.txt
如果输入为英文文档类型,下载英文模型
```
```bash
cd PaddleOCR/ppstructure
# 下载模型
......@@ -104,7 +104,7 @@ cd ..
使用下载的模型恢复给定文档的版面,以英文模型为例,执行如下命令:
```python
```bash
python3 predict_system.py \
--image_dir=./docs/table/1.png \
--det_model_dir=inference/en_PP-OCRv3_det_infer \
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册