diff --git a/doc/doc_ch/inference_ppocr.md b/doc/doc_ch/inference_ppocr.md
index 472c0003f963d6f65fa2d0babbf6b9c7d0ec9b80..a9f6e6300aaf5a01a22149dde2d328083df85ff3 100644
--- a/doc/doc_ch/inference_ppocr.md
+++ b/doc/doc_ch/inference_ppocr.md
@@ -78,9 +78,27 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg"
Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.9956803321838379)
```
+
+
+### 2.2 英文模型的推理
+
+英文识别模型推理,可以执行如下命令, 注意修改字典路径:
+
+```
+# 下载英文数字识别模型:
+wget https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar
+tar xf en_PP-OCRv3_det_infer.tar
+python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./en_PP-OCRv3_det_infer/" --rec_char_dict_path="ppocr/utils/en_dict.txt"
+```
+
+执行命令后,上图的预测结果为:
+
+```
+Predicts of ./doc/imgs_words/en/word_1.png: ('JOINT', 0.998160719871521)
+```
-### 2.2 多语言模型的推理
+### 2.3 多语言模型的推理
如果您需要预测的是其他语言模型,可以在[此链接](./models_list.md#%E5%A4%9A%E8%AF%AD%E8%A8%80%E8%AF%86%E5%88%AB%E6%A8%A1%E5%9E%8B)中找到对应语言的inference模型,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径, 同时为了得到正确的可视化结果,需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/fonts/` 路径下有默认提供的小语种字体,例如韩文识别:
```
diff --git a/doc/doc_en/inference_ppocr_en.md b/doc/doc_en/inference_ppocr_en.md
index 935f92f5144f582630a45edcc886b609ecdc82da..97c176527fa8d3969e6f88f0f58cf4bbf0b70a86 100755
--- a/doc/doc_en/inference_ppocr_en.md
+++ b/doc/doc_en/inference_ppocr_en.md
@@ -8,7 +8,8 @@ This article introduces the use of the Python inference engine for the PP-OCR mo
- [Text Detection Model Inference](#text-detection-model-inference)
- [Text Recognition Model Inference](#text-recognition-model-inference)
- [1. Lightweight Chinese Recognition Model Inference](#1-lightweight-chinese-recognition-model-inference)
- - [2. Multilingual Model Inference](#2-multilingual-model-inference)
+ - [2. English Recognition Model Inference](#2-english-recognition-model-inference)
+ - [3. Multilingual Model Inference](#3-multilingual-model-inference)
- [Angle Classification Model Inference](#angle-classification-model-inference)
- [Text Detection Angle Classification and Recognition Inference Concatenation](#text-detection-angle-classification-and-recognition-inference-concatenation)
@@ -76,10 +77,28 @@ After executing the command, the prediction results (recognized text and score)
```bash
Predicts of ./doc/imgs_words_en/word_10.png:('PAIN', 0.988671)
```
+
+### 2. English Recognition Model Inference
-
+For English recognition model inference, you can execute the following commands,you need to specify the dictionary path used by `--rec_char_dict_path`:
-### 2. Multilingual Model Inference
+```
+# download en model:
+wget https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar
+tar xf en_PP-OCRv3_det_infer.tar
+python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./en_PP-OCRv3_det_infer/" --rec_char_dict_path="ppocr/utils/en_dict.txt"
+```
+
+After executing the command, the prediction result of the above figure is:
+
+```
+Predicts of ./doc/imgs_words/en/word_1.png: ('JOINT', 0.998160719871521)
+```
+
+
+
+
+### 3. Multilingual Model Inference
If you need to predict [other language models](./models_list_en.md#Multilingual), when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/fonts` path, such as Korean recognition: