diff --git a/doc/doc_ch/algorithm_overview.md b/doc/doc_ch/algorithm_overview.md index 6f19c6aa0e204d5af2e785f91f67257576f3d6db..b4ec6bc2c32bc36f1e84cea583b4f0e7eb42e49d 100755 --- a/doc/doc_ch/algorithm_overview.md +++ b/doc/doc_ch/algorithm_overview.md @@ -50,7 +50,7 @@ PaddleOCR基于动态图开源的文本识别算法列表: - [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11] - [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] - [x] SRN([paper](https://arxiv.org/abs/2003.12294))[5] -- [x] NRTR([paper](https://arxiv.org/abs/1806.00926v2)) +- [x] NRTR([paper](https://arxiv.org/abs/1806.00926v2))[13] 参考[DTRB][3](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下: @@ -78,4 +78,3 @@ PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训 ## 3. 模型推理 上述模型中除PP-OCR系列模型以外,其余模型仅支持基于Python引擎的推理,具体内容可参考[基于Python预测引擎推理](./inference.md) - diff --git a/doc/doc_ch/reference.md b/doc/doc_ch/reference.md index f1337dedc96c685173cbcc8450a57c259d2c0029..3347447741a7852b30e793bd0d30696c190598a0 100644 --- a/doc/doc_ch/reference.md +++ b/doc/doc_ch/reference.md @@ -112,4 +112,14 @@ year={2016} } +13.NRTR +@misc{sheng2019nrtr, + title={NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition}, + author={Fenfen Sheng and Zhineng Chen and Bo Xu}, + year={2019}, + eprint={1806.00926}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} + ```