benchmark_en.md 3.2 KB
Newer Older
G
grasswolfs 已提交
1 2
# BENCHMARK

L
LDOUBLEV 已提交
3
This document gives the performance of the series models for Chinese and English recognition.
G
grasswolfs 已提交
4 5 6

## TEST DATA

L
LDOUBLEV 已提交
7 8 9
We collected 300 images for different real application scenarios to evaluate the overall OCR system, including contract samples, license plates, nameplates, train tickets, test sheets, forms, certificates, street view images, business cards, digital meter, etc. The following figure shows some images of the test set.

<div align="center">
D
dyning 已提交
10
<img src="../datasets/doc.jpg"  width = "1000" height = "500" />
L
LDOUBLEV 已提交
11
</div>
G
grasswolfs 已提交
12

L
LDOUBLEV 已提交
13
## MEASUREMENT
G
grasswolfs 已提交
14 15

Explanation:
L
LDOUBLEV 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
- v1.0 indicates DB+CRNN models without the strategies. v1.1 indicates the PP-OCR models with the strategies and the direction classify. slim_v1.1 indicates the PP-OCR models with prunner or quantization.

- The long size of the input for the text detector is 960.

- The evaluation time-consuming stage is the complete stage from image input to result output, including image pre-processing and post-processing.

- ```Intel Xeon 6148``` is the server-side CPU model. Intel MKL-DNN is used in the test to accelerate the CPU prediction speed.

- ```Snapdragon 855``` is a mobile processing platform model.

Compares the model size and F-score:

| Model Name                    | Model Size <br> of the <br> Whole System\(M\) | Model Size <br>of the Text <br> Detector\(M\) | Model Size <br> of the Direction <br> Classifier\(M\) | Model Size<br>of the Text <br> Recognizer \(M\) | F\-score |
|:-:|:-:|:-:|:-:|:-:|:-:|
| ch\_ppocr\_mobile\_v1\.1 | 8\.1        | 2\.6        | 0\.9           | 4\.6        | 0\.5193      |
| ch\_ppocr\_server\_v1\.1 | 155\.1      | 47\.2       | 0\.9           | 107         | 0\.5414      |
| ch\_ppocr\_mobile\_v1\.0 | 8\.6        | 4\.1        | \-             | 4\.5        | 0\.393       |
| ch\_ppocr\_server\_v1\.0 | 203\.8      | 98\.5       | \-             | 105\.3      | 0\.4436      |

Compares the time-consuming on T4 GPU (ms):

| Model Name                     | Overall  | Text Detector  | Direction Classifier  | Text Recognizer |
|:-:|:-:|:-:|:-:|:-:|
| ch\_ppocr\_mobile\_v1\.1 | 137 | 35 | 24    | 78  |
| ch\_ppocr\_server\_v1\.1 | 204 | 39 | 25    | 140 |
| ch\_ppocr\_mobile\_v1\.0 | 117 | 41 | \-    | 76  |
| ch\_ppocr\_server\_v1\.0 | 199 | 52 | \-    | 147 |

Compares the time-consuming on CPU (ms):

| Model Name                     | Overall  | Text Detector  | Direction Classifier  | Text Recognizer |
|:-:|:-:|:-:|:-:|:-:|
| ch\_ppocr\_mobile\_v1\.1 | 421  | 164 | 51    | 206 |
| ch\_ppocr\_mobile\_v1\.0 | 398  | 219 | \-    | 179 |

Compares the model size, F-score, the time-consuming on SD 855 of between the slim models and the original models:

| Model Name                          | Model Size <br> of the <br> Whole System\(M\) | Model Size <br>of the Text <br> Detector\(M\) | Model Size <br> of the Direction <br> Classifier\(M\) | Model Size<br>of the Text <br> Recognizer \(M\) | F\-score | SD 855<br>\(ms\) |
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| ch\_ppocr\_mobile\_v1\.1       | 8\.1        | 2\.6        | 0\.9           | 4\.6        | 0\.5193      | 306          |
| ch\_ppocr\_mobile\_slim\_v1\.1 | 3\.5        | 1\.4        | 0\.5           | 1\.6        | 0\.521       | 268          |