ViewController.mm 18.4 KB
Newer Older
L
lvxiangxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
//
// Created by lvxiangxiang on 2020/7/10.
// Copyright (c) 2020 baidu. All rights reserved.
//

#import <opencv2/opencv.hpp>
#import <opencv2/imgcodecs/ios.h>
#import <opencv2/videoio/cap_ios.h>
//#import <opencv2/highgui/ios.h>
#import "ViewController.h"
#import "BoxLayer.h"

#include "include/paddle_api.h"
#include "timer.h"
#import "pdocr/ocr_db_post_process.h"
#import "pdocr/ocr_crnn_process.h"

using namespace paddle::lite_api;
using namespace cv;

struct Object {
    int batch_id;
    cv::Rect rec;
    int class_id;
    float prob;
};

std::mutex mtx;
std::shared_ptr<PaddlePredictor> net_ocr1;
std::shared_ptr<PaddlePredictor> net_ocr2;
Timer tic;
long long count = 0;

double tensor_mean(const Tensor &tin) {
    auto shape = tin.shape();
    int64_t size = 1;
    for (int i = 0; i < shape.size(); i++) {
        size *= shape[i];
    }
    double mean = 0.;
    auto ptr = tin.data<float>();
    for (int i = 0; i < size; i++) {
        mean += ptr[i];
    }
    return mean / size;
}

cv::Mat resize_img_type0(const cv::Mat &img, int max_size_len, float *ratio_h, float *ratio_w) {
    int w = img.cols;
    int h = img.rows;

    float ratio = 1.f;
    int max_wh = w >= h ? w : h;
    if (max_wh > max_size_len) {
        if (h > w) {
            ratio = float(max_size_len) / float(h);
        } else {
            ratio = float(max_size_len) / float(w);
        }
    }

    int resize_h = int(float(h) * ratio);
    int resize_w = int(float(w) * ratio);
    if (resize_h % 32 == 0)
        resize_h = resize_h;
    else if (resize_h / 32 < 1)
        resize_h = 32;
    else
        resize_h = (resize_h / 32 - 1) * 32;

    if (resize_w % 32 == 0)
        resize_w = resize_w;
    else if (resize_w / 32 < 1)
        resize_w = 32;
    else
        resize_w = (resize_w / 32 - 1) * 32;

    cv::Mat resize_img;
    cv::resize(img, resize_img, cv::Size(resize_w, resize_h));

    *ratio_h = float(resize_h) / float(h);
    *ratio_w = float(resize_w) / float(w);
    return resize_img;
}

void neon_mean_scale(const float *din, float *dout, int size, std::vector<float> mean, std::vector<float> scale) {
    float32x4_t vmean0 = vdupq_n_f32(mean[0]);
    float32x4_t vmean1 = vdupq_n_f32(mean[1]);
    float32x4_t vmean2 = vdupq_n_f32(mean[2]);
    float32x4_t vscale0 = vdupq_n_f32(1.f / scale[0]);
    float32x4_t vscale1 = vdupq_n_f32(1.f / scale[1]);
    float32x4_t vscale2 = vdupq_n_f32(1.f / scale[2]);

    float *dout_c0 = dout;
    float *dout_c1 = dout + size;
    float *dout_c2 = dout + size * 2;

    int i = 0;
    for (; i < size - 3; i += 4) {
        float32x4x3_t vin3 = vld3q_f32(din);
        float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
        float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
        float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
        float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
        float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
        float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
        vst1q_f32(dout_c0, vs0);
        vst1q_f32(dout_c1, vs1);
        vst1q_f32(dout_c2, vs2);

        din += 12;
        dout_c0 += 4;
        dout_c1 += 4;
        dout_c2 += 4;
    }
    for (; i < size; i++) {
        *(dout_c0++) = (*(din++) - mean[0]) / scale[0];
        *(dout_c1++) = (*(din++) - mean[1]) / scale[1];
        *(dout_c2++) = (*(din++) - mean[2]) / scale[2];
    }
}


// fill tensor with mean and scale, neon speed up
void fill_tensor_with_cvmat(const Mat &img_in, Tensor &tout, int width, int height,
        std::vector<float> mean, std::vector<float> scale, bool is_scale) {
    if (img_in.channels() == 4) {
        cv::cvtColor(img_in, img_in, CV_RGBA2RGB);
    }
    cv::Mat im;
    cv::resize(img_in, im, cv::Size(width, height), 0.f, 0.f);
    cv::Mat imgf;
    float scale_factor = is_scale ? 1 / 255.f : 1.f;
    im.convertTo(imgf, CV_32FC3, scale_factor);
    const float *dimg = reinterpret_cast<const float *>(imgf.data);
    float *dout = tout.mutable_data<float>();
    neon_mean_scale(dimg, dout, width * height, mean, scale);
}

std::vector<Object> detect_object(const float *data,
        int count,
        const std::vector<std::vector<uint64_t>> &lod,
        const float thresh,
        Mat &image) {
    std::vector<Object> rect_out;
    const float *dout = data;
    for (int iw = 0; iw < count; iw++) {
        int oriw = image.cols;
        int orih = image.rows;
        if (dout[1] > thresh && static_cast<int>(dout[0]) > 0) {
            Object obj;
            int x = static_cast<int>(dout[2] * oriw);
            int y = static_cast<int>(dout[3] * orih);
            int w = static_cast<int>(dout[4] * oriw) - x;
            int h = static_cast<int>(dout[5] * orih) - y;
            cv::Rect rec_clip = cv::Rect(x, y, w, h) & cv::Rect(0, 0, image.cols, image.rows);
            obj.batch_id = 0;
            obj.class_id = static_cast<int>(dout[0]);
            obj.prob = dout[1];
            obj.rec = rec_clip;
            if (w > 0 && h > 0 && obj.prob <= 1) {
                rect_out.push_back(obj);
                cv::rectangle(image, rec_clip, cv::Scalar(255, 0, 0));
            }
        }
        dout += 6;
    }
    return rect_out;
}

@interface ViewController () <CvVideoCameraDelegate>
@property(weak, nonatomic) IBOutlet UIImageView *imageView;
@property(weak, nonatomic) IBOutlet UISwitch *flag_process;
@property(weak, nonatomic) IBOutlet UISwitch *flag_video;
@property(weak, nonatomic) IBOutlet UIImageView *preView;
@property(weak, nonatomic) IBOutlet UISwitch *flag_back_cam;
@property(weak, nonatomic) IBOutlet UILabel *result;
@property(nonatomic, strong) CvVideoCamera *videoCamera;
@property(nonatomic, strong) UIImage *image;
@property(nonatomic) bool flag_init;
@property(nonatomic) bool flag_cap_photo;
@property(nonatomic) std::vector<float> scale;
@property(nonatomic) std::vector<float> mean;
@property(nonatomic) NSArray *labels;
@property(nonatomic) cv::Mat cvimg;
@property(nonatomic, strong) UIImage *ui_img_test;
@property(strong, nonatomic) CALayer *boxLayer;

@end

@implementation ViewController
@synthesize imageView;

- (OcrData *)paddleOcrRec:(cv::Mat)image {

    OcrData *result = [OcrData new];

    std::vector<float> mean = {0.5f, 0.5f, 0.5f};
    std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};

    cv::Mat crop_img;
    image.copyTo(crop_img);
    cv::Mat resize_img;


    float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

    resize_img = crnn_resize_img(crop_img, wh_ratio);
    resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);

    const float *dimg = reinterpret_cast<const float *>(resize_img.data);

    std::unique_ptr<Tensor> input_tensor0(std::move(net_ocr2->GetInput(0)));
    input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
    auto *data0 = input_tensor0->mutable_data<float>();

    neon_mean_scale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);

    //// Run CRNN predictor
    net_ocr2->Run();

    // Get output and run postprocess
    std::unique_ptr<const Tensor> output_tensor0(std::move(net_ocr2->GetOutput(0)));
    auto *rec_idx = output_tensor0->data<int>();

    auto rec_idx_lod = output_tensor0->lod();
    auto shape_out = output_tensor0->shape();
    NSMutableString *text = [[NSMutableString alloc] init];
    for (int n = int(rec_idx_lod[0][0]); n < int(rec_idx_lod[0][1] * 2); n += 2) {
        if (rec_idx[n] >= self.labels.count) {
            std::cout << "Index " << rec_idx[n] << " out of text dict range!" << std::endl;
            continue;
        }
        [text appendString:self.labels[rec_idx[n]]];
    }

    result.label = text;
    // get score
    std::unique_ptr<const Tensor> output_tensor1(std::move(net_ocr2->GetOutput(1)));
    auto *predict_batch = output_tensor1->data<float>();
    auto predict_shape = output_tensor1->shape();

    auto predict_lod = output_tensor1->lod();

    int argmax_idx;
    int blank = predict_shape[1];
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

    for (int n = predict_lod[0][0]; n < predict_lod[0][1] - 1; n++) {
        argmax_idx = int(argmax(&predict_batch[n * predict_shape[1]], &predict_batch[(n + 1) * predict_shape[1]]));
        max_value = float(*std::max_element(&predict_batch[n * predict_shape[1]], &predict_batch[(n + 1) * predict_shape[1]]));

        if (blank - 1 - argmax_idx > 1e-5) {
            score += max_value;
            count += 1;
        }

    }
    score /= count;
    result.accuracy = score;
    return result;
}
- (NSArray *) ocr_infer:(cv::Mat) originImage{
    int max_side_len = 960;
    float ratio_h{};
    float ratio_w{};
    cv::Mat image;
    cv::cvtColor(originImage, image, cv::COLOR_RGB2BGR);

    cv::Mat img;
    image.copyTo(img);

    img = resize_img_type0(img, max_side_len, &ratio_h, &ratio_w);
    cv::Mat img_fp;
    img.convertTo(img_fp, CV_32FC3, 1.0 / 255.f);

    std::unique_ptr<Tensor> input_tensor(net_ocr1->GetInput(0));
    input_tensor->Resize({1, 3, img_fp.rows, img_fp.cols});
    auto *data0 = input_tensor->mutable_data<float>();
    const float *dimg = reinterpret_cast<const float *>(img_fp.data);
    neon_mean_scale(dimg, data0, img_fp.rows * img_fp.cols, self.mean, self.scale);
    tic.clear();
    tic.start();
    net_ocr1->Run();
    std::unique_ptr<const Tensor> output_tensor(std::move(net_ocr1->GetOutput(0)));
    auto *outptr = output_tensor->data<float>();
    auto shape_out = output_tensor->shape();

    int64_t out_numl = 1;
    double sum = 0;
    for (auto i : shape_out) {
        out_numl *= i;
    }

    int s2 = int(shape_out[2]);
    int s3 = int(shape_out[3]);

    cv::Mat pred_map = cv::Mat::zeros(s2, s3, CV_32F);
    memcpy(pred_map.data, outptr, s2 * s3 * sizeof(float));
    cv::Mat cbuf_map;
    pred_map.convertTo(cbuf_map, CV_8UC1, 255.0f);

    const double threshold = 0.1 * 255;
    const double maxvalue = 255;
    cv::Mat bit_map;
    cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);

    auto boxes = boxes_from_bitmap(pred_map, bit_map);

    std::vector<std::vector<std::vector<int>>> filter_boxes = filter_tag_det_res(boxes, ratio_h, ratio_w, image);


    cv::Point rook_points[filter_boxes.size()][4];

    for (int n = 0; n < filter_boxes.size(); n++) {
        for (int m = 0; m < filter_boxes[0].size(); m++) {
            rook_points[n][m] = cv::Point(int(filter_boxes[n][m][0]), int(filter_boxes[n][m][1]));
        }
    }

    NSMutableArray *result = [[NSMutableArray alloc] init];

    for (int i = 0; i < filter_boxes.size(); i++) {
        cv::Mat crop_img;
        crop_img = get_rotate_crop_image(image, filter_boxes[i]);
        OcrData *r = [self paddleOcrRec:crop_img ];
        NSMutableArray *points = [NSMutableArray new];
        for (int jj = 0; jj < 4; ++jj) {
            NSValue *v = [NSValue valueWithCGPoint:CGPointMake(
                    rook_points[i][jj].x / CGFloat(originImage.cols),
                    rook_points[i][jj].y / CGFloat(originImage.rows))];
            [points addObject:v];
        }
        r.polygonPoints = points;
        [result addObject:r];
    }
    NSArray* rec_out =[[result reverseObjectEnumerator] allObjects];
    tic.end();
    std::cout<<"infer time: "<<tic.get_sum_ms()<<"ms"<<std::endl;
    return rec_out;
}
- (NSArray *)readLabelsFromFile:(NSString *)labelFilePath {

    NSString *content = [NSString stringWithContentsOfFile:labelFilePath encoding:NSUTF8StringEncoding error:nil];
    NSArray *lines = [content componentsSeparatedByCharactersInSet:[NSCharacterSet newlineCharacterSet]];
    NSMutableArray *ret = [[NSMutableArray alloc] init];
    for (int i = 0; i < lines.count; ++i) {
        [ret addObject:@""];
    }
    NSUInteger cnt = 0;
    for (id line in lines) {
        NSString *l = [(NSString *) line stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceAndNewlineCharacterSet]];
        if ([l length] == 0)
            continue;
        NSArray *segs = [l componentsSeparatedByString:@":"];
        NSUInteger key;
        NSString *value;
        if ([segs count] != 2) {
            key = cnt;
            value = [segs[0] stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceAndNewlineCharacterSet]];
        } else {
            key = [[segs[0] stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceAndNewlineCharacterSet]] integerValue];
            value = [segs[1] stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceAndNewlineCharacterSet]];
        }

        ret[key] = value;
        cnt += 1;
    }
    return [NSArray arrayWithArray:ret];
}

- (void)viewDidAppear:(BOOL)animated {
    [super viewDidAppear:animated];
    self.boxLayer = [[CALayer alloc] init];

    CGRect r = AVMakeRectWithAspectRatioInsideRect(self.imageView.frame.size, self.imageView.bounds);
    std::cout<<self.imageView.frame.size.width<<","<<self.imageView.frame.size.height<<std::endl;
    self.boxLayer.frame = r;

    [self.imageView.layer addSublayer:self.boxLayer];

    NSString *label_file_path = [[NSBundle mainBundle] pathForResource:[NSString stringWithFormat:@"%@", @"label_list"] ofType:@"txt"];

    self.labels = [self readLabelsFromFile:label_file_path];
    self.mean = {0.485f, 0.456f, 0.406f};
    self.scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};

    NSString *model1_path = [[NSBundle mainBundle] pathForResource:[NSString stringWithFormat:@"%@", @"ch_det_mv3_db_opt"] ofType:@"nb"];
    NSString *model2_path = [[NSBundle mainBundle] pathForResource:[NSString stringWithFormat:@"%@", @"ch_rec_mv3_crnn_opt"] ofType:@"nb"];
    std::string model1_path_str = std::string([model1_path UTF8String]);
    std::string model2_path_str =  std::string([model2_path UTF8String]);
    MobileConfig config;
    config.set_model_from_file(model1_path_str);
    net_ocr1 = CreatePaddlePredictor<MobileConfig>(config);
    MobileConfig config2;
    config2.set_model_from_file(model2_path_str);
    net_ocr2 = CreatePaddlePredictor<MobileConfig>(config2);


    cv::Mat originImage;
    UIImageToMat(self.image, originImage);
    NSArray *rec_out = [self ocr_infer:originImage];
    [_boxLayer.sublayers makeObjectsPerformSelector:@selector(removeFromSuperlayer)];
    std::cout<<self.imageView.image.size.width<<","<<self.imageView.image.size.height<<std::endl;

    CGFloat h = _boxLayer.frame.size.height;
    CGFloat w = _boxLayer.frame.size.width;
    std::ostringstream result2;
    NSInteger cnt = 0;
    for (id obj in rec_out) {
        OcrData *data = obj;
        BoxLayer *singleBox = [[BoxLayer alloc] init];
        [singleBox renderOcrPolygon:data withHeight:h withWidth:w withLabel:YES];
        [_boxLayer addSublayer:singleBox];
        result2<<[data.label UTF8String] <<","<<data.accuracy<<"\n";
        cnt += 1;
    }
    self.flag_init = true;
}

- (void)viewDidLoad {
    [super viewDidLoad];
    // Do any additional setup after loading the view, typically from a nib.
    _flag_process.on = NO;
    _flag_back_cam.on = NO;
    _flag_video.on = NO;
    _flag_cap_photo = false;
    _image = [UIImage imageNamed:@"ocr.png"];
    if (_image != nil) {
        printf("load image successed\n");
        imageView.image = _image;
    } else {
        printf("load image failed\n");
    }

    [_flag_process addTarget:self action:@selector(PSwitchValueChanged:) forControlEvents:UIControlEventValueChanged];
    [_flag_back_cam addTarget:self action:@selector(CSwitchValueChanged:) forControlEvents:UIControlEventValueChanged];

    self.videoCamera = [[CvVideoCamera alloc] initWithParentView:self.preView];
    self.videoCamera.delegate = self;
    self.videoCamera.defaultAVCaptureDevicePosition = AVCaptureDevicePositionFront;
    self.videoCamera.defaultAVCaptureSessionPreset = AVCaptureSessionPreset1920x1080;
    self.videoCamera.defaultAVCaptureVideoOrientation = AVCaptureVideoOrientationPortrait;
    self.videoCamera.rotateVideo = 90;
    self.videoCamera.defaultFPS = 30;
    [self.view insertSubview:self.imageView atIndex:0];
}

- (IBAction)swith_video_photo:(UISwitch *)sender {
    NSLog(@"%@", sender.isOn ? @"video ON" : @"video OFF");
    if (sender.isOn) {
        self.flag_video.on = YES;
    } else {
        self.flag_video.on = NO;
    }
}

- (IBAction)cap_photo:(id)sender {
    if (!self.flag_process.isOn) {
        self.result.text = @"please turn on the camera firstly";
    } else {
        self.flag_cap_photo = true;
    }
}

- (void)PSwitchValueChanged:(UISwitch *)sender {
    NSLog(@"%@", sender.isOn ? @"process ON" : @"process OFF");
    if (sender.isOn) {
        [self.videoCamera start];
    } else {
        [self.videoCamera stop];
    }
}

- (void)CSwitchValueChanged:(UISwitch *)sender {
    NSLog(@"%@", sender.isOn ? @"back ON" : @"back OFF");
    if (sender.isOn) {
        if (self.flag_process.isOn) {
            [self.videoCamera stop];
        }
        self.videoCamera.defaultAVCaptureDevicePosition = AVCaptureDevicePositionBack ;
        if (self.flag_process.isOn) {
            [self.videoCamera start];
        }
    } else {
        if (self.flag_process.isOn) {
            [self.videoCamera stop];
        }
        self.videoCamera.defaultAVCaptureDevicePosition = AVCaptureDevicePositionFront;
        if (self.flag_process.isOn) {
            [self.videoCamera start];
        }
    }
}

- (void)processImage:(cv::Mat &)image {

    dispatch_async(dispatch_get_main_queue(), ^{
        if (self.flag_process.isOn) {
            if (self.flag_init) {
                if (self.flag_video.isOn || self.flag_cap_photo) {
                    self.flag_cap_photo = false;
                    if (image.channels() == 4) {
                        cvtColor(image, self->_cvimg, CV_RGBA2RGB);
                    }
                    auto rec_out =[self ocr_infer:self->_cvimg];
                    std::ostringstream result;
                    NSInteger cnt = 0;
                    [_boxLayer.sublayers makeObjectsPerformSelector:@selector(removeFromSuperlayer)];

                    CGFloat h = _boxLayer.frame.size.height;
                    CGFloat w = _boxLayer.frame.size.width;
                    for (id obj in rec_out) {
                        OcrData *data = obj;
                        BoxLayer *singleBox = [[BoxLayer alloc] init];
                        [singleBox renderOcrPolygon:data withHeight:h withWidth:w withLabel:YES];
                        [_boxLayer addSublayer:singleBox];
                        result<<[data.label UTF8String] <<","<<data.accuracy<<"\n";
                        cnt += 1;
                    }
                    cvtColor(self->_cvimg, self->_cvimg, CV_RGB2BGR);
                    self.imageView.image = MatToUIImage(self->_cvimg);
                }
            }
        }
    });
}

- (void)didReceiveMemoryWarning {
    [super didReceiveMemoryWarning];
    // Dispose of any resources that can be recreated.
}

@end