rec_sar_head.py 13.0 KB
Newer Older
A
andyjpaddle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F


class SAREncoder(nn.Layer):
    """
    Args:
        enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
        enc_drop_rnn (float): Dropout probability of RNN layer in encoder.
        enc_gru (bool): If True, use GRU, else LSTM in encoder.
        d_model (int): Dim of channels from backbone.
        d_enc (int): Dim of encoder RNN layer.
        mask (bool): If True, mask padding in RNN sequence.
    """
    def __init__(self,
                 enc_bi_rnn=False,
                 enc_drop_rnn=0.1,
                 enc_gru=False,
                 d_model=512,
                 d_enc=512,
                 mask=True,
                 **kwargs):
        super().__init__()
        assert isinstance(enc_bi_rnn, bool)
        assert isinstance(enc_drop_rnn, (int, float))
        assert 0 <= enc_drop_rnn < 1.0
        assert isinstance(enc_gru, bool)
        assert isinstance(d_model, int)
        assert isinstance(d_enc, int)
        assert isinstance(mask, bool)

        self.enc_bi_rnn = enc_bi_rnn
        self.enc_drop_rnn = enc_drop_rnn
        self.mask = mask

        # LSTM Encoder
        if enc_bi_rnn:
            direction = 'bidirectional'
        else:
            direction = 'forward'
        kwargs = dict(
            input_size=d_model,
            hidden_size=d_enc,
            num_layers=2,
            time_major=False,
            dropout=enc_drop_rnn,
            direction=direction
        )
        if enc_gru:
            self.rnn_encoder = nn.GRU(**kwargs)
        else:
            self.rnn_encoder = nn.LSTM(**kwargs)
        
        # global feature transformation
        encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
        self.linear = nn.Linear(encoder_rnn_out_size, encoder_rnn_out_size)
    
    def forward(self, feat, img_metas=None):
        if img_metas is not None:
            assert len(img_metas[0]) == feat.shape[0]
        
        valid_ratios = None
        if img_metas is not None and self.mask:
            valid_ratios = img_metas[-1]
        
        h_feat = feat.shape[2] # bsz c h w
        feat_v = F.max_pool2d(
            feat, kernel_size=(h_feat, 1), stride=1, padding=0
        )
        feat_v = feat_v.squeeze(2) # bsz * C * W
        feat_v = paddle.transpose(feat_v, perm=[0, 2, 1]) # bsz * W * C
        holistic_feat = self.rnn_encoder(feat_v)[0] # bsz * T * C
        
        if valid_ratios is not None:
            valid_hf = []
            T = holistic_feat.shape[1]
            for i, valid_ratio in enumerate(valid_ratios):
                valid_step = min(T, math.ceil(T * valid_ratio)) - 1
                valid_hf.append(holistic_feat[i, valid_step, :])
            valid_hf = paddle.stack(valid_hf, axis=0)
        else:
            valid_hf = holistic_feat[:, -1, :] # bsz * C
        holistic_feat = self.linear(valid_hf) # bsz * C
        
        return holistic_feat
    

class BaseDecoder(nn.Layer):
    def __init__(self, **kwargs):
        super().__init__()

    def forward_train(self, feat, out_enc, targets, img_metas):
        raise NotImplementedError

    def forward_test(self, feat, out_enc, img_metas):
        raise NotImplementedError

    def forward(self, 
                feat,
                out_enc,
                label=None,
                img_metas=None,
                train_mode=True):
        self.train_mode = train_mode

        if train_mode:
            return self.forward_train(feat, out_enc, label, img_metas)
        return self.forward_test(feat, out_enc, img_metas)


class ParallelSARDecoder(BaseDecoder):
    """
    Args:
A
andyjpaddle 已提交
121
        out_channels (int): Output class number.
A
andyjpaddle 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
        dec_bi_rnn (bool): If True, use bidirectional RNN in decoder.
        dec_drop_rnn (float): Dropout of RNN layer in decoder.
        dec_gru (bool): If True, use GRU, else LSTM in decoder.
        d_model (int): Dim of channels from backbone.
        d_enc (int): Dim of encoder RNN layer.
        d_k (int): Dim of channels of attention module.
        pred_dropout (float): Dropout probability of prediction layer.
        max_seq_len (int): Maximum sequence length for decoding.
        mask (bool): If True, mask padding in feature map.
        start_idx (int): Index of start token.
        padding_idx (int): Index of padding token.
        pred_concat (bool): If True, concat glimpse feature from
            attention with holistic feature and hidden state.
    """

    def __init__(self,
A
andyjpaddle 已提交
139
                out_channels, # 90 + unknown + start + padding
A
andyjpaddle 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
                enc_bi_rnn=False,
                dec_bi_rnn=False,
                dec_drop_rnn=0.0,
                dec_gru=False,
                d_model=512,
                d_enc=512,
                d_k=64,
                pred_dropout=0.1,
                max_text_length=30,
                mask=True,
                pred_concat=True,
                **kwargs):
        super().__init__()

        self.num_classes = num_classes
        self.enc_bi_rnn = enc_bi_rnn
        self.d_k = d_k
A
andyjpaddle 已提交
157 158
        self.start_idx = out_channels - 2
	self.padding_idx = out_channels - 1
A
andyjpaddle 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        self.max_seq_len = max_text_length
        self.mask = mask
        self.pred_concat = pred_concat

        encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
        decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1)

        # 2D attention layer
        self.conv1x1_1 = nn.Linear(decoder_rnn_out_size, d_k)
        self.conv3x3_1 = nn.Conv2D(d_model, d_k, kernel_size=3, stride=1, padding=1)
        self.conv1x1_2 = nn.Linear(d_k, 1)

        # Decoder RNN layer
        if dec_bi_rnn:
            direction = 'bidirectional'
        else:
            direction = 'forward'

        kwargs = dict(
            input_size=encoder_rnn_out_size,
            hidden_size=encoder_rnn_out_size,
            num_layers=2,
            time_major=False,
            dropout=dec_drop_rnn,
            direction=direction
        )
        if dec_gru:
            self.rnn_decoder = nn.GRU(**kwargs)
        else:
            self.rnn_decoder = nn.LSTM(**kwargs)

        # Decoder input embedding
        self.embedding = nn.Embedding(
A
andyjpaddle 已提交
192
            self.num_classes, encoder_rnn_out_size, padding_idx=self.padding_idx)
A
andyjpaddle 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        
        # Prediction layer
        self.pred_dropout = nn.Dropout(pred_dropout)
        pred_num_classes = num_classes - 1
        if pred_concat:
            fc_in_channel = decoder_rnn_out_size + d_model + d_enc
        else:
            fc_in_channel = d_model
        self.prediction = nn.Linear(fc_in_channel, pred_num_classes)

    def _2d_attention(self,
                      decoder_input,
                      feat,
                      holistic_feat,
                      valid_ratios=None):
        
        y = self.rnn_decoder(decoder_input)[0]
        # y: bsz * (seq_len + 1) * hidden_size
        
        attn_query = self.conv1x1_1(y) # bsz * (seq_len + 1) * attn_size
        bsz, seq_len, attn_size = attn_query.shape
        attn_query = paddle.unsqueeze(attn_query, axis=[3, 4])
        # (bsz, seq_len + 1, attn_size, 1, 1)

        attn_key = self.conv3x3_1(feat)
        # bsz * attn_size * h * w
        attn_key = attn_key.unsqueeze(1)
        # bsz * 1 * attn_size * h * w

        attn_weight = paddle.tanh(paddle.add(attn_key, attn_query))
        
        # bsz * (seq_len + 1) * attn_size * h * w
        attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 3, 4, 2])
        # bsz * (seq_len + 1) * h * w * attn_size
        attn_weight = self.conv1x1_2(attn_weight)
        # bsz * (seq_len + 1) * h * w * 1
        bsz, T, h, w, c = attn_weight.shape
        assert c == 1

        if valid_ratios is not None:
            # cal mask of attention weight
            for i, valid_ratio in enumerate(valid_ratios):
                valid_width = min(w, math.ceil(w * valid_ratio))
                attn_weight[i, :, :, valid_width:, :] = float('-inf')

        attn_weight = paddle.reshape(attn_weight, [bsz, T, -1])
        attn_weight = F.softmax(attn_weight, axis=-1)
        
        attn_weight = paddle.reshape(attn_weight, [bsz, T, h, w, c])
        attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 4, 2, 3])
        # attn_weight: bsz * T * c * h * w
        # feat: bsz * c * h * w
        attn_feat = paddle.sum(paddle.multiply(feat.unsqueeze(1), attn_weight), (3, 4), keepdim=False)
        # bsz * (seq_len + 1) * C

        # Linear transformation
        if self.pred_concat:
            hf_c = holistic_feat.shape[-1]
            holistic_feat = paddle.expand(holistic_feat, shape=[bsz, seq_len, hf_c])
            y = self.prediction(paddle.concat((y, attn_feat, holistic_feat), 2))
        else:
            y = self.prediction(attn_feat)
        # bsz * (seq_len + 1) * num_classes
        if self.train_mode:
            y = self.pred_dropout(y)
        
        return y

    def forward_train(self, feat, out_enc, label, img_metas):
        '''
        img_metas: [label, valid_ratio]
        '''
        if img_metas is not None:
            assert len(img_metas[0]) == feat.shape[0]

        valid_ratios = None
        if img_metas is not None and self.mask:
            valid_ratios = img_metas[-1]
        
        label = label.cuda()
        lab_embedding = self.embedding(label)
        # bsz * seq_len * emb_dim
        out_enc = out_enc.unsqueeze(1)
        # bsz * 1 * emb_dim
        in_dec = paddle.concat((out_enc, lab_embedding), axis=1)
        # bsz * (seq_len + 1) * C
        out_dec = self._2d_attention(
            in_dec, feat, out_enc, valid_ratios=valid_ratios
        )
        # bsz * (seq_len + 1) * num_classes
        
        return out_dec[:, 1:, :] # bsz * seq_len * num_classes

    def forward_test(self, feat, out_enc, img_metas):
        if img_metas is not None:
            assert len(img_metas[0]) == feat.shape[0]

        valid_ratios = None
        if img_metas is not None and self.mask:
            valid_ratios = img_metas[-1] 
        
        seq_len = self.max_seq_len
        bsz = feat.shape[0]
        start_token = paddle.full((bsz, ),
                                   fill_value=self.start_idx,
                                   dtype='int64')
        # bsz
        start_token = self.embedding(start_token)
        # bsz * emb_dim
        emb_dim = start_token.shape[1]
        start_token = start_token.unsqueeze(1)
        start_token = paddle.expand(start_token, shape=[bsz, seq_len, emb_dim])
        # bsz * seq_len * emb_dim
        out_enc = out_enc.unsqueeze(1)
        # bsz * 1 * emb_dim
        decoder_input = paddle.concat((out_enc, start_token), axis=1)
        # bsz * (seq_len + 1) * emb_dim

        outputs = []
        for i in range(1, seq_len + 1):
            decoder_output = self._2d_attention(
                decoder_input, feat, out_enc, valid_ratios=valid_ratios
            )
            char_output = decoder_output[:, i, :] # bsz * num_classes
            char_output = F.softmax(char_output, -1)
            outputs.append(char_output)
            max_idx = paddle.argmax(char_output, axis=1, keepdim=False)
            char_embedding = self.embedding(max_idx) # bsz * emb_dim
            if i < seq_len:
                decoder_input[:, i + 1, :] = char_embedding
        
        outputs = paddle.stack(outputs, 1) # bsz * seq_len * num_classes

        return outputs


class SARHead(nn.Layer):
    def __init__(self, 
A
andyjpaddle 已提交
331
		out_channels,
A
andyjpaddle 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
                enc_bi_rnn=False,
                enc_drop_rnn=0.1,
                enc_gru=False,
                dec_bi_rnn=False,
                dec_drop_rnn=0.0,
                dec_gru=False,
                d_k=512,
                pred_dropout=0.1,
                max_text_length=30,
                pred_concat=True,
                **kwargs):
        super(SARHead, self).__init__()

        # encoder module
        self.encoder = SAREncoder(
            enc_bi_rnn=enc_bi_rnn, 
            enc_drop_rnn=enc_drop_rnn, 
            enc_gru=enc_gru)

        # decoder module
        self.decoder = ParallelSARDecoder(
A
andyjpaddle 已提交
353 354
            out_channels=out_channels,
	    enc_bi_rnn=enc_bi_rnn,
A
andyjpaddle 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
            dec_bi_rnn=dec_bi_rnn,
            dec_drop_rnn=dec_drop_rnn,
            dec_gru=dec_gru,
            d_k=d_k,
            pred_dropout=pred_dropout,
            max_text_length=max_text_length,
            pred_concat=pred_concat) 
    
    def forward(self, feat, targets=None):
        '''
        img_metas: [label, valid_ratio]
        '''
        holistic_feat = self.encoder(feat, targets) # bsz c
        
        if self.training:
            label = targets[0] # label
            label = paddle.to_tensor(label, dtype='int64')
            final_out = self.decoder(feat, holistic_feat, label, img_metas=targets)
        if not self.training:
            final_out = self.decoder(feat, holistic_feat, label=None, img_metas=targets, train_mode=False)
            # (bsz, seq_len, num_classes)
        
        return final_out
A
andyjpaddle 已提交
378