db_postprocess.py 7.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py
"""
L
LDOUBLEV 已提交
18 19 20 21 22 23
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2
W
WenmuZhou 已提交
24
import paddle
L
LDOUBLEV 已提交
25 26 27 28 29 30 31 32 33
from shapely.geometry import Polygon
import pyclipper


class DBPostProcess(object):
    """
    The post process for Differentiable Binarization (DB).
    """

W
WenmuZhou 已提交
34 35 36 37 38
    def __init__(self,
                 thresh=0.3,
                 box_thresh=0.7,
                 max_candidates=1000,
                 unclip_ratio=2.0,
39
                 use_dilation=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
40
                 score_mode="fast",
W
WenmuZhou 已提交
41 42 43 44 45
                 **kwargs):
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.max_candidates = max_candidates
        self.unclip_ratio = unclip_ratio
L
LDOUBLEV 已提交
46
        self.min_size = 3
littletomatodonkey's avatar
littletomatodonkey 已提交
47 48 49 50 51
        self.score_mode = score_mode
        assert score_mode in [
            "slow", "fast"
        ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)

W
WenmuZhou 已提交
52 53
        self.dilation_kernel = None if not use_dilation else np.array(
            [[1, 1], [1, 1]])
L
LDOUBLEV 已提交
54 55 56 57 58 59 60 61 62 63

    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (1, H, W),
                whose values are binarized as {0, 1}
        '''

        bitmap = _bitmap
        height, width = bitmap.shape

L
LDOUBLEV 已提交
64 65
        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
                                cv2.CHAIN_APPROX_SIMPLE)
T
tink2123 已提交
66 67 68 69
        if len(outs) == 3:
            img, contours, _ = outs[0], outs[1], outs[2]
        elif len(outs) == 2:
            contours, _ = outs[0], outs[1]
L
LDOUBLEV 已提交
70 71 72

        num_contours = min(len(contours), self.max_candidates)

W
WenmuZhou 已提交
73 74
        boxes = []
        scores = []
L
LDOUBLEV 已提交
75 76 77 78 79 80
        for index in range(num_contours):
            contour = contours[index]
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
littletomatodonkey's avatar
littletomatodonkey 已提交
81 82 83 84
            if self.score_mode == "fast":
                score = self.box_score_fast(pred, points.reshape(-1, 2))
            else:
                score = self.box_score_slow(pred, contour)
L
LDOUBLEV 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97
            if self.box_thresh > score:
                continue

            box = self.unclip(points).reshape(-1, 1, 2)
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)

            box[:, 0] = np.clip(
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
W
WenmuZhou 已提交
98 99 100
            boxes.append(box.astype(np.int16))
            scores.append(score)
        return np.array(boxes, dtype=np.int16), scores
L
LDOUBLEV 已提交
101

L
LDOUBLEV 已提交
102 103
    def unclip(self, box):
        unclip_ratio = self.unclip_ratio
L
LDOUBLEV 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [
            points[index_1], points[index_2], points[index_3], points[index_4]
        ]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
littletomatodonkey's avatar
littletomatodonkey 已提交
135 136 137
        '''
        box_score_fast: use bbox mean score as the mean score
        '''
L
LDOUBLEV 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

littletomatodonkey's avatar
littletomatodonkey 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    def box_score_slow(self, bitmap, contour):
        '''
        box_score_slow: use polyon mean score as the mean score
        '''
        h, w = bitmap.shape[:2]
        contour = contour.copy()
        contour = np.reshape(contour, (-1, 2))

        xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
        xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
        ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
        ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)

        contour[:, 0] = contour[:, 0] - xmin
        contour[:, 1] = contour[:, 1] - ymin

        cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

W
WenmuZhou 已提交
172 173
    def __call__(self, outs_dict, shape_list):
        pred = outs_dict['maps']
W
WenmuZhou 已提交
174 175 176
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = pred[:, 0, :, :]
L
LDOUBLEV 已提交
177 178 179 180
        segmentation = pred > self.thresh

        boxes_batch = []
        for batch_index in range(pred.shape[0]):
L
LDOUBLEV 已提交
181
            src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
182 183 184 185 186 187
            if self.dilation_kernel is not None:
                mask = cv2.dilate(
                    np.array(segmentation[batch_index]).astype(np.uint8),
                    self.dilation_kernel)
            else:
                mask = segmentation[batch_index]
L
LDOUBLEV 已提交
188
            boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
L
LDOUBLEV 已提交
189
                                                   src_w, src_h)
L
LDOUBLEV 已提交
190

W
WenmuZhou 已提交
191
            boxes_batch.append({'points': boxes})
L
LDOUBLEV 已提交
192
        return boxes_batch
L
fix bug  
LDOUBLEV 已提交
193 194


L
LDOUBLEV 已提交
195
class DistillationDBPostProcess(object):
L
LDOUBLEV 已提交
196 197
    def __init__(self,
                 model_name=["student"],
L
fix bug  
LDOUBLEV 已提交
198 199
                 key=None,
                 thresh=0.3,
L
LDOUBLEV 已提交
200
                 box_thresh=0.6,
L
fix bug  
LDOUBLEV 已提交
201
                 max_candidates=1000,
L
LDOUBLEV 已提交
202
                 unclip_ratio=1.5,
L
fix bug  
LDOUBLEV 已提交
203 204 205 206 207
                 use_dilation=False,
                 score_mode="fast",
                 **kwargs):
        self.model_name = model_name
        self.key = key
L
LDOUBLEV 已提交
208 209 210 211 212 213 214
        self.post_process = DBPostProcess(
            thresh=thresh,
            box_thresh=box_thresh,
            max_candidates=max_candidates,
            unclip_ratio=unclip_ratio,
            use_dilation=use_dilation,
            score_mode=score_mode)
L
fix bug  
LDOUBLEV 已提交
215

L
LDOUBLEV 已提交
216
    def __call__(self, predicts, shape_list):
L
fix bug  
LDOUBLEV 已提交
217
        results = {}
L
LDOUBLEV 已提交
218 219
        for k in self.model_name:
            results[k] = self.post_process(predicts[k], shape_list=shape_list)
L
fix bug  
LDOUBLEV 已提交
220
        return results