det_mv3_db.yml 2.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Global:
  use_gpu: false
  epoch_num: 5
  log_smooth_window: 20
  print_batch_step: 1
  save_model_dir: ./output/db_mv3/
  save_epoch_step: 1200
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 400]
  cal_metric_during_train: False
  pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
  checkpoints:
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_en/img_10.jpg
  save_res_path: ./output/det_db/predicts_db.txt

Architecture:
  model_type: det
  algorithm: DB
  Transform:
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: large
L
LDOUBLEV 已提交
26
    disable_se: False
L
LDOUBLEV 已提交
27 28
  Neck:
    name: DBFPN
L
LDOUBLEV 已提交
29
    out_channels: 256
L
LDOUBLEV 已提交
30 31 32 33 34 35 36 37
  Head:
    name: DBHead
    k: 50

Loss:
  name: DBLoss
  balance_loss: true
  main_loss_type: DiceLoss
L
fix yml  
LDOUBLEV 已提交
38 39
  alpha: 5 
  beta: 10 
L
LDOUBLEV 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
  ohem_ratio: 3

Optimizer:
  name: Adam #Momentum
  #momentum: 0.9
  beta1: 0.9
  beta2: 0.999
  lr:
    learning_rate: 0.001
  regularizer:
    name: 'L2'
    factor: 0

PostProcess:
  name: DBPostProcess
  thresh: 0.3
  box_thresh: 0.6
  max_candidates: 1000
  unclip_ratio: 1.5

Metric:
  name: DetMetric
  main_indicator: hmean

Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/icdar2015/text_localization/
    label_file_list:
      - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
    ratio_list: [1.0]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - Resize:
L
LDOUBLEV 已提交
77
          size: [640, 640]
L
LDOUBLEV 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
      - MakeBorderMap:
          shrink_ratio: 0.4
          thresh_min: 0.3
          thresh_max: 0.7
      - MakeShrinkMap:
          shrink_ratio: 0.4
          min_text_size: 8
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 1
    num_workers: 0
    use_shared_memory: False

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/icdar2015/text_localization/
    label_file_list:
      - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - DetResizeForTest:
          image_shape: [736, 1280]
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 1 # must be 1
    num_workers: 0
    use_shared_memory: False