README.md 14.5 KB
Newer Older
1
English | [简体中文](README_ch.md)
2

3
## Introduction
G
grasswolfs 已提交
4
PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.
D
dyning 已提交
5

6
**Recent updates**
D
dyning 已提交
7
- 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
D
Daniel Yang 已提交
8
- 2020.9.19 Update the ultra lightweight compressed ppocr_mobile_slim series models, the overall model size is 3.5M (see [PP-OCR Pipeline](#PP-OCR-Pipeline)), suitable for mobile deployment. [Model Downloads](#Supported-Chinese-model-list)
9
- 2020.9.17 Update the ultra lightweight ppocr_mobile series and general ppocr_server series Chinese and English ocr models, which are comparable to commercial effects. [Model Downloads](#Supported-Chinese-model-list)
G
grasswolfs 已提交
10
- 2020.9.17 update [English recognition model](./doc/doc_en/models_list_en.md#english-recognition-model) and [Multilingual recognition model](doc/doc_en/models_list_en.md#english-recognition-model), `English`, `Chinese`, `German`, `French`, `Japanese` and `Korean` have been supported. Models for more languages will continue to be updated.
D
Daniel Yang 已提交
11
- 2020.8.24 Support the use of PaddleOCR through whl package installation,please refer  [PaddleOCR Package](./doc/doc_en/whl_en.md)
12 13
- 2020.8.21 Update the replay and PPT of the live lesson at Bilibili on August 18, lesson 2, easy to learn and use OCR tool spree. [Get Address](https://aistudio.baidu.com/aistudio/education/group/info/1519)
- [more](./doc/doc_en/update_en.md)
D
dyning 已提交
14

15 16 17 18 19 20 21 22 23 24
## Features
- PPOCR series of high-quality pre-trained models, comparable to commercial effects
    - Ultra lightweight ppocr_mobile series models: detection (2.6M) + direction classifier (0.9M) + recognition (4.6M) = 8.1M
    - General ppocr_server series models: detection (47.2M) + direction classifier (0.9M) + recognition (107M) = 155.1M
    - Ultra lightweight compression ppocr_mobile_slim series models: detection (1.4M) + direction classifier (0.5M) + recognition (1.6M) = 3.5M
- Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
- Support multi-language recognition: Korean, Japanese, German, French
- Support user-defined training, provides rich predictive inference deployment solutions
- Support PIP installation, easy to use
- Support Linux, Windows, MacOS and other systems
G
grasswolfs 已提交
25

26
## Visualization
L
LDOUBLEV 已提交
27

G
grasswolfs 已提交
28
<div align="center">
G
grasswolfs 已提交
29
    <img src="doc/imgs_results/1101.jpg" width="800">
D
Daniel Yang 已提交
30
    <img src="doc/imgs_results/1103.jpg" width="800">
G
grasswolfs 已提交
31
</div>
D
dyning 已提交
32

D
Daniel Yang 已提交
33
The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see [More visualizations](./doc/doc_en/visualization_en.md).
34

G
grasswolfs 已提交
35 36 37 38 39 40 41 42 43
<a name="Community"></a>
## Community
- Scan the QR code below with your Wechat, you can access to official technical exchange group. Look forward to your participation.

<div align="center">
<img src="./doc/joinus.PNG"  width = "200" height = "200" />
</div>


44
## Quick Experience
D
dyning 已提交
45

46
You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
G
grasswolfs 已提交
47

48
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
D
dyning 已提交
49

50
 Also, you can scan the QR code below to install the App (**Android support only**)
D
dyning 已提交
51 52 53 54 55

<div align="center">
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
</div>

56 57 58 59 60 61
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)

<a name="Supported-Chinese-model-list"></a>

## PP-OCR 1.1 series model list(Update on Sep 17)

L
LDOUBLEV 已提交
62 63 64 65
| Model introduction                                           | Model name                   | Recommended scene | Detection model                                              | Direction classifier                                         | Recognition model                                            |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| Chinese and English ultra-lightweight OCR model (8.1M)       | ch_ppocr_mobile_v1.1_xx      | Mobile & server   | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_pre.tar) |  
| Chinese and English general OCR model (155.1M)               | ch_ppocr_server_v1.1_xx      | Server            | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_pre.tar) |  
L
LDOUBLEV 已提交
66
| Chinese and English ultra-lightweight compressed OCR model (3.5M) | ch_ppocr_mobile_slim_v1.1_xx | Mobile            | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_prune_opt.nb) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_quant_opt.nb) |    [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_quant_opt.nb) |
G
grasswolfs 已提交
67 68 69 70
| French ultra-lightweight OCR model (4.6M)       | french_ppocr_mobile_v1.1_xx      | Mobile & server   | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar) | - | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_train.tar)  |
| German ultra-lightweight OCR model (4.6M)       | german_ppocr_mobile_v1.1_xx      | Mobile & server   | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar) | - |[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_train.tar) |
| Korean ultra-lightweight OCR model (5.9M)       | korean_ppocr_mobile_v1.1_xx      | Mobile & server   | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar) | - |[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_train.tar)|
| Japan ultra-lightweight OCR model (6.2M)       | japan_ppocr_mobile_v1.1_xx      | Mobile & server   | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar) | - |[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_train.tar)  |
71 72 73 74 75 76 77 78 79 80 81

For more model downloads (including multiple languages), please refer to [PP-OCR v1.1 series model downloads](./doc/doc_en/models_list_en.md)


## Tutorials
- [Installation](./doc/doc_en/installation_en.md)
- [Quick Start](./doc/doc_en/quickstart_en.md)
- [Code Structure](./doc/doc_en/tree_en.md)
- Algorithm introduction
    - [Text Detection Algorithm](./doc/doc_en/algorithm_overview_en.md)
    - [Text Recognition Algorithm](./doc/doc_en/algorithm_overview_en.md)
D
Daniel Yang 已提交
82
    - [PP-OCR Pipeline](#PP-OCR-Pipeline)
83 84 85
- Model training/evaluation
    - [Text Detection](./doc/doc_en/detection_en.md)
    - [Text Recognition](./doc/doc_en/recognition_en.md)
T
tink2123 已提交
86
    - [Direction Classification](./doc/doc_en/angle_class_en.md)
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    - [Yml Configuration](./doc/doc_en/config_en.md)
- Inference and Deployment
    - [Quick inference based on pip](./doc/doc_en/whl_en.md)
    - [Python Inference](./doc/doc_en/inference_en.md)
    - [C++ Inference](./deploy/cpp_infer/readme_en.md)
    - [Serving](./deploy/hubserving/readme_en.md)
    - [Mobile](./deploy/lite/readme_en.md)
    - [Model Quantization](./deploy/slim/quantization/README_en.md)
    - [Model Compression](./deploy/slim/prune/README_en.md)
    - [Benchmark](./doc/doc_en/benchmark_en.md)
- Datasets
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
    - [Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
- [Visualization](#Visualization)
D
dyning 已提交
104
- [FAQ](./doc/doc_en/FAQ_en.md)
105 106 107 108 109
- [Community](#Community)
- [References](./doc/doc_en/reference_en.md)
- [License](#LICENSE)
- [Contribution](#CONTRIBUTION)

D
Daniel Yang 已提交
110
<a name="PP-OCR-Pipeline"></a>
111

D
Daniel Yang 已提交
112
## PP-OCR Pipeline
113

G
grasswolfs 已提交
114 115 116 117
<div align="center">
    <img src="./doc/ppocr_framework.png" width="800">
</div>

G
grasswolfs 已提交
118
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner and PACT quantization is based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim).
D
dyning 已提交
119 120


D
dyning 已提交
121

122
## Visualization [more](./doc/doc_en/visualization_en.md)
M
MissPenguin 已提交
123
- Chinese OCR model
G
grasswolfs 已提交
124
<div align="center">
D
Daniel Yang 已提交
125
    <img src="./doc/imgs_results/1102.jpg" width="800">
G
grasswolfs 已提交
126
    <img src="./doc/imgs_results/1104.jpg" width="800">
G
grasswolfs 已提交
127
    <img src="./doc/imgs_results/1106.jpg" width="800">
G
grasswolfs 已提交
128
    <img src="./doc/imgs_results/1105.jpg" width="800">
M
MissPenguin 已提交
129 130 131 132 133 134 135 136 137
</div>

- English OCR model
<div align="center">
    <img src="./doc/imgs_results/img_12.jpg" width="800">
</div>

- Multilingual OCR model
<div align="center">
G
grasswolfs 已提交
138 139
    <img src="./doc/imgs_results/1110.jpg" width="800">
    <img src="./doc/imgs_results/1112.jpg" width="800">
G
grasswolfs 已提交
140
</div>
T
tink2123 已提交
141

D
dyning 已提交
142

G
grasswolfs 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
<a name="language request"></a>
## Guideline for new language request

If you want to request a new language support, a PR with 2 following files are needed:

1. In folder [ppocr/utils/corpus](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/ppocr/utils/corpus),
it is necessary to submit the corpus text to this path and name it with `{language}_corpus.txt` that contains a list of all characters. Please see the format example from other files in that folder.

2. In folder [ppocr/utils/dict](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/ppocr/utils/dict),
it is necessary to submit the dict to this path and name it with `{language}_dict.txt` that contains a list of words in your language.
Maybe, 50000 words per language is necessary at least.
Of course, the more, the better.

If your language has unique elements, please tell me in advance within any way, such as useful links, wikipedia and so on.

More details, see [Multilingual OCR Development Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048)

M
MissPenguin 已提交
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
<a name="LICENSE"></a>
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>

<a name="CONTRIBUTION"></a>
## Contribution
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) and [Karl Horky](https://github.com/karlhorky) for contributing and revising the English documentation.
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.
- Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.
G
grasswolfs 已提交
176 177
- Thanks [lijinhan](https://github.com/lijinhan) for contributing a new way, i.e., java SpringBoot, to achieve the request for the Hubserving deployment.
- Thanks [Mejans](https://github.com/Mejans) for contributing the Occitan corpus and character set.