layoutlm.yml 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
Global:
  use_gpu: True
  epoch_num: &epoch_num 200
  log_smooth_window: 10
  print_batch_step: 10
  save_model_dir: ./output/ser_layoutlm/
  save_epoch_step: 2000
  # evaluation is run every 10 iterations after the 0th iteration
  eval_batch_step: [ 0, 19 ]
  cal_metric_during_train: False
文幕地方's avatar
文幕地方 已提交
11
  pretrained_model: &pretrained_model layoutlm-base-uncased # This field can only be changed by modifying the configuration file
12 13
  save_inference_dir:
  use_visualdl: False
文幕地方's avatar
文幕地方 已提交
14
  infer_img: doc/vqa/input/zh_val_0.jpg
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  save_res_path: ./output/ser/predicts_layoutlm.txt

Architecture:
  model_type: vqa
  algorithm: &algorithm "LayoutLM"
  Transform:
  Backbone:
    name: LayoutLMForSer
    pretrained_model: *pretrained_model
    checkpoints:
    num_classes: &num_classes 7

Loss:
  name: VQASerTokenLayoutLMLoss
  num_classes: *num_classes

Optimizer:
  name: AdamW
  beta1: 0.9
  beta2: 0.999
  lr:
    name: Linear
    learning_rate: 0.00005
    epochs: *epoch_num
    warmup_epoch: 2
  regularizer:
    name: Const
    factor: 0.00000
    
PostProcess:
  name: VQASerTokenLayoutLMPostProcess
  class_path: &class_path ppstructure/vqa/labels/labels_ser.txt

Metric:
  name: VQASerTokenMetric
  main_indicator: hmean

Train:
  dataset:
    name: SimpleDataSet
    data_dir: train_data/XFUND/zh_train/image
    label_file_list: 
      - train_data/XFUND/zh_train/xfun_normalize_train.json
    transforms:
      - DecodeImage: # load image
          img_mode: RGB
          channel_first: False
      - VQATokenLabelEncode: # Class handling label
          contains_re: False
          algorithm: *algorithm
          class_path: *class_path
      - VQATokenPad:
          max_seq_len: &max_seq_len 512
          return_attention_mask: True
      - VQASerTokenChunk:
          max_seq_len: *max_seq_len
      - Resize:
          size: [224,224]
      - NormalizeImage:
          scale: 1
          mean: [ 123.675, 116.28, 103.53 ]
          std: [ 58.395, 57.12, 57.375 ]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: [ 'input_ids','labels', 'bbox', 'image', 'attention_mask', 'token_type_ids'] # dataloader will return list in this order
  loader:
    shuffle: True
    drop_last: False
    batch_size_per_card: 8
    num_workers: 4

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: train_data/XFUND/zh_val/image
    label_file_list:
      - train_data/XFUND/zh_val/xfun_normalize_val.json
    transforms:
      - DecodeImage: # load image
          img_mode: RGB
          channel_first: False
      - VQATokenLabelEncode: # Class handling label
          contains_re: False
          algorithm: *algorithm
          class_path: *class_path
      - VQATokenPad:
          max_seq_len: *max_seq_len
          return_attention_mask: True
      - VQASerTokenChunk:
          max_seq_len: *max_seq_len
      - Resize:
          size: [224,224]
      - NormalizeImage:
          scale: 1
          mean: [ 123.675, 116.28, 103.53 ]
          std: [ 58.395, 57.12, 57.375 ]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: [ 'input_ids', 'labels', 'bbox', 'image', 'attention_mask', 'token_type_ids'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 8
    num_workers: 4