rec_img_aug.py 19.7 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
LDOUBLEV 已提交
15 16 17
import math
import cv2
import numpy as np
T
tink2123 已提交
18
import random
T
Topdu 已提交
19
import copy
T
Topdu 已提交
20
from PIL import Image
W
WenmuZhou 已提交
21
from .text_image_aug import tia_perspective, tia_stretch, tia_distort
L
LDOUBLEV 已提交
22

W
WenmuZhou 已提交
23 24

class RecAug(object):
文幕地方's avatar
add bda  
文幕地方 已提交
25
    def __init__(self,
文幕地方's avatar
文幕地方 已提交
26
                 tia_prob=0.4,
文幕地方's avatar
add bda  
文幕地方 已提交
27 28 29 30 31 32 33 34 35 36
                 crop_prob=0.4,
                 reverse_prob=0.4,
                 noise_prob=0.4,
                 jitter_prob=0.4,
                 blur_prob=0.4,
                 hsv_aug_prob=0.4,
                 **kwargs):
        self.tia_prob = tia_prob
        self.bda = BaseDataAugmentation(crop_prob, reverse_prob, noise_prob,
                                        jitter_prob, blur_prob, hsv_aug_prob)
W
WenmuZhou 已提交
37 38 39

    def __call__(self, data):
        img = data['image']
文幕地方's avatar
add bda  
文幕地方 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        h, w, _ = img.shape

        # tia
        if random.random() <= self.tia_prob:
            if h >= 20 and w >= 20:
                img = tia_distort(img, random.randint(3, 6))
                img = tia_stretch(img, random.randint(3, 6))
            img = tia_perspective(img)

        # bda
        data['image'] = img
        data = self.bda(data)
        return data


class BaseDataAugmentation(object):
    def __init__(self,
                 crop_prob=0.4,
                 reverse_prob=0.4,
                 noise_prob=0.4,
                 jitter_prob=0.4,
                 blur_prob=0.4,
                 hsv_aug_prob=0.4,
                 **kwargs):
        self.crop_prob = crop_prob
        self.reverse_prob = reverse_prob
        self.noise_prob = noise_prob
        self.jitter_prob = jitter_prob
        self.blur_prob = blur_prob
        self.hsv_aug_prob = hsv_aug_prob

    def __call__(self, data):
        img = data['image']
        h, w, _ = img.shape

        if random.random() <= self.crop_prob and h >= 20 and w >= 20:
            img = get_crop(img)

        if random.random() <= self.blur_prob:
            img = blur(img)

        if random.random() <= self.hsv_aug_prob:
            img = hsv_aug(img)

        if random.random() <= self.jitter_prob:
            img = jitter(img)

        if random.random() <= self.noise_prob:
            img = add_gasuss_noise(img)

        if random.random() <= self.reverse_prob:
            img = 255 - img

W
WenmuZhou 已提交
93 94 95 96
        data['image'] = img
        return data


A
andyjpaddle 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
class RecConAug(object):
    def __init__(self,
                 prob=0.5,
                 image_shape=(32, 320, 3),
                 max_text_length=25,
                 ext_data_num=1,
                 **kwargs):
        self.ext_data_num = ext_data_num
        self.prob = prob
        self.max_text_length = max_text_length
        self.image_shape = image_shape
        self.max_wh_ratio = self.image_shape[1] / self.image_shape[0]

    def merge_ext_data(self, data, ext_data):
        ori_w = round(data['image'].shape[1] / data['image'].shape[0] *
                      self.image_shape[0])
        ext_w = round(ext_data['image'].shape[1] / ext_data['image'].shape[0] *
                      self.image_shape[0])
        data['image'] = cv2.resize(data['image'], (ori_w, self.image_shape[0]))
        ext_data['image'] = cv2.resize(ext_data['image'],
                                       (ext_w, self.image_shape[0]))
        data['image'] = np.concatenate(
            [data['image'], ext_data['image']], axis=1)
        data["label"] += ext_data["label"]
        return data

    def __call__(self, data):
        rnd_num = random.random()
        if rnd_num > self.prob:
            return data
        for idx, ext_data in enumerate(data["ext_data"]):
            if len(data["label"]) + len(ext_data[
                    "label"]) > self.max_text_length:
                break
            concat_ratio = data['image'].shape[1] / data['image'].shape[
                0] + ext_data['image'].shape[1] / ext_data['image'].shape[0]
            if concat_ratio > self.max_wh_ratio:
                break
            data = self.merge_ext_data(data, ext_data)
        data.pop("ext_data")
        return data


Z
zhoujun 已提交
140 141 142 143 144 145
class ClsResizeImg(object):
    def __init__(self, image_shape, **kwargs):
        self.image_shape = image_shape

    def __call__(self, data):
        img = data['image']
A
andyjpaddle 已提交
146
        norm_img, _ = resize_norm_img(img, self.image_shape)
Z
zhoujun 已提交
147 148 149 150
        data['image'] = norm_img
        return data


T
Topdu 已提交
151
class NRTRRecResizeImg(object):
T
Topdu 已提交
152
    def __init__(self, image_shape, resize_type, padding=False, **kwargs):
T
Topdu 已提交
153
        self.image_shape = image_shape
T
Topdu 已提交
154
        self.resize_type = resize_type
T
Topdu 已提交
155
        self.padding = padding
T
Topdu 已提交
156 157 158

    def __call__(self, data):
        img = data['image']
T
Topdu 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        image_shape = self.image_shape
        if self.padding:
            imgC, imgH, imgW = image_shape
            # todo: change to 0 and modified image shape
            h = img.shape[0]
            w = img.shape[1]
            ratio = w / float(h)
            if math.ceil(imgH * ratio) > imgW:
                resized_w = imgW
            else:
                resized_w = int(math.ceil(imgH * ratio))
            resized_image = cv2.resize(img, (resized_w, imgH))
            norm_img = np.expand_dims(resized_image, -1)
            norm_img = norm_img.transpose((2, 0, 1))
            resized_image = norm_img.astype(np.float32) / 128. - 1.
            padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
            padding_im[:, :, 0:resized_w] = resized_image
            data['image'] = padding_im
            return data
T
Topdu 已提交
179 180 181 182 183 184 185
        if self.resize_type == 'PIL':
            image_pil = Image.fromarray(np.uint8(img))
            img = image_pil.resize(self.image_shape, Image.ANTIALIAS)
            img = np.array(img)
        if self.resize_type == 'OpenCV':
            img = cv2.resize(img, self.image_shape)
        norm_img = np.expand_dims(img, -1)
T
Topdu 已提交
186 187 188 189
        norm_img = norm_img.transpose((2, 0, 1))
        data['image'] = norm_img.astype(np.float32) / 128. - 1.
        return data

Z
zhoujun 已提交
190

W
WenmuZhou 已提交
191 192 193 194
class RecResizeImg(object):
    def __init__(self,
                 image_shape,
                 infer_mode=False,
T
tink2123 已提交
195
                 character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
T
tink2123 已提交
196
                 padding=True,
W
WenmuZhou 已提交
197 198 199
                 **kwargs):
        self.image_shape = image_shape
        self.infer_mode = infer_mode
T
tink2123 已提交
200
        self.character_dict_path = character_dict_path
T
tink2123 已提交
201
        self.padding = padding
W
WenmuZhou 已提交
202 203 204

    def __call__(self, data):
        img = data['image']
T
tink2123 已提交
205
        if self.infer_mode and self.character_dict_path is not None:
A
andyjpaddle 已提交
206 207
            norm_img, valid_ratio = resize_norm_img_chinese(img,
                                                            self.image_shape)
W
WenmuZhou 已提交
208
        else:
A
andyjpaddle 已提交
209 210
            norm_img, valid_ratio = resize_norm_img(img, self.image_shape,
                                                    self.padding)
T
tink2123 已提交
211
        data['image'] = norm_img
A
andyjpaddle 已提交
212
        data['valid_ratio'] = valid_ratio
T
tink2123 已提交
213 214 215
        return data


A
add vl  
andyjpaddle 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
class VLRecResizeImg(object):
    def __init__(self,
                 image_shape,
                 infer_mode=False,
                 character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
                 padding=True,
                 **kwargs):
        self.image_shape = image_shape
        self.infer_mode = infer_mode
        self.character_dict_path = character_dict_path
        self.padding = padding

    def __call__(self, data):
        img = data['image']
        if self.infer_mode and self.character_dict_path is not None:
            norm_img, valid_ratio = resize_norm_img_chinese(img,
                                                            self.image_shape)
        else:
            imgC, imgH, imgW = self.image_shape
            resized_image = cv2.resize(
                img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
            resized_w = imgW
            resized_image = resized_image.astype('float32')
            if self.image_shape[0] == 1:
                resized_image = resized_image / 255
                norm_img = resized_image[np.newaxis, :]
            else:
                norm_img = resized_image.transpose((2, 0, 1)) / 255
            valid_ratio = min(1.0, float(resized_w / imgW))

        data['image'] = norm_img
        data['valid_ratio'] = valid_ratio
        return data


T
tink2123 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
class SRNRecResizeImg(object):
    def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
        self.image_shape = image_shape
        self.num_heads = num_heads
        self.max_text_length = max_text_length

    def __call__(self, data):
        img = data['image']
        norm_img = resize_norm_img_srn(img, self.image_shape)
        data['image'] = norm_img
        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)

        data['encoder_word_pos'] = encoder_word_pos
        data['gsrm_word_pos'] = gsrm_word_pos
        data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1
        data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2
        return data


A
andyjpaddle 已提交
271 272 273 274 275 276 277
class SARRecResizeImg(object):
    def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
        self.image_shape = image_shape
        self.width_downsample_ratio = width_downsample_ratio

    def __call__(self, data):
        img = data['image']
T
tink2123 已提交
278 279
        norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
            img, self.image_shape, self.width_downsample_ratio)
A
andyjpaddle 已提交
280 281 282 283 284 285 286
        data['image'] = norm_img
        data['resized_shape'] = resize_shape
        data['pad_shape'] = pad_shape
        data['valid_ratio'] = valid_ratio
        return data


287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
class PRENResizeImg(object):
    def __init__(self, image_shape, **kwargs):
        """
        Accroding to original paper's realization, it's a hard resize method here. 
        So maybe you should optimize it to fit for your task better.
        """
        self.dst_h, self.dst_w = image_shape

    def __call__(self, data):
        img = data['image']
        resized_img = cv2.resize(
            img, (self.dst_w, self.dst_h), interpolation=cv2.INTER_LINEAR)
        resized_img = resized_img.transpose((2, 0, 1)) / 255
        resized_img -= 0.5
        resized_img /= 0.5
        data['image'] = resized_img.astype(np.float32)
        return data


A
andyjpaddle 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
    imgC, imgH, imgW_min, imgW_max = image_shape
    h = img.shape[0]
    w = img.shape[1]
    valid_ratio = 1.0
    # make sure new_width is an integral multiple of width_divisor.
    width_divisor = int(1 / width_downsample_ratio)
    # resize
    ratio = w / float(h)
    resize_w = math.ceil(imgH * ratio)
    if resize_w % width_divisor != 0:
        resize_w = round(resize_w / width_divisor) * width_divisor
    if imgW_min is not None:
        resize_w = max(imgW_min, resize_w)
    if imgW_max is not None:
        valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
        resize_w = min(imgW_max, resize_w)
    resized_image = cv2.resize(img, (resize_w, imgH))
    resized_image = resized_image.astype('float32')
    # norm 
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    resize_shape = resized_image.shape
    padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
    padding_im[:, :, 0:resize_w] = resized_image
    pad_shape = padding_im.shape

    return padding_im, resize_shape, pad_shape, valid_ratio


T
tink2123 已提交
341
def resize_norm_img(img, image_shape, padding=True):
L
LDOUBLEV 已提交
342 343 344
    imgC, imgH, imgW = image_shape
    h = img.shape[0]
    w = img.shape[1]
T
tink2123 已提交
345 346 347
    if not padding:
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
L
LDOUBLEV 已提交
348 349
        resized_w = imgW
    else:
T
tink2123 已提交
350 351 352 353 354 355
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
356 357 358 359 360 361 362 363 364 365
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
A
andyjpaddle 已提交
366 367
    valid_ratio = min(1.0, float(resized_w / imgW))
    return padding_im, valid_ratio
L
LDOUBLEV 已提交
368 369


T
tink2123 已提交
370 371 372
def resize_norm_img_chinese(img, image_shape):
    imgC, imgH, imgW = image_shape
    # todo: change to 0 and modified image shape
T
tink2123 已提交
373
    max_wh_ratio = imgW * 1.0 / imgH
T
tink2123 已提交
374 375 376
    h, w = img.shape[0], img.shape[1]
    ratio = w * 1.0 / h
    max_wh_ratio = max(max_wh_ratio, ratio)
A
andyjpaddle 已提交
377
    imgW = int(imgH * max_wh_ratio)
T
tink2123 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
A
andyjpaddle 已提交
393 394
    valid_ratio = min(1.0, float(resized_w / imgW))
    return padding_im, valid_ratio
T
tink2123 已提交
395 396


T
tink2123 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
def resize_norm_img_srn(img, image_shape):
    imgC, imgH, imgW = image_shape

    img_black = np.zeros((imgH, imgW))
    im_hei = img.shape[0]
    im_wid = img.shape[1]

    if im_wid <= im_hei * 1:
        img_new = cv2.resize(img, (imgH * 1, imgH))
    elif im_wid <= im_hei * 2:
        img_new = cv2.resize(img, (imgH * 2, imgH))
    elif im_wid <= im_hei * 3:
        img_new = cv2.resize(img, (imgH * 3, imgH))
    else:
        img_new = cv2.resize(img, (imgW, imgH))

    img_np = np.asarray(img_new)
    img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
    img_black[:, 0:img_np.shape[1]] = img_np
    img_black = img_black[:, :, np.newaxis]

    row, col, c = img_black.shape
    c = 1

    return np.reshape(img_black, (c, row, col)).astype(np.float32)


def srn_other_inputs(image_shape, num_heads, max_text_length):

    imgC, imgH, imgW = image_shape
    feature_dim = int((imgH / 8) * (imgW / 8))

    encoder_word_pos = np.array(range(0, feature_dim)).reshape(
        (feature_dim, 1)).astype('int64')
    gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
        (max_text_length, 1)).astype('int64')

    gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
    gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
        [1, max_text_length, max_text_length])
    gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
                                  [num_heads, 1, 1]) * [-1e9]

    gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
        [1, max_text_length, max_text_length])
    gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
                                  [num_heads, 1, 1]) * [-1e9]

    return [
        encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
        gsrm_slf_attn_bias2
    ]


T
tink2123 已提交
451 452 453 454 455 456 457
def flag():
    """
    flag
    """
    return 1 if random.random() > 0.5000001 else -1


文幕地方's avatar
add bda  
文幕地方 已提交
458
def hsv_aug(img):
T
tink2123 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    """
    cvtColor
    """
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    delta = 0.001 * random.random() * flag()
    hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
    new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    return new_img


def blur(img):
    """
    blur
    """
    h, w, _ = img.shape
    if h > 10 and w > 10:
        return cv2.GaussianBlur(img, (5, 5), 1)
    else:
        return img


T
tink2123 已提交
480
def jitter(img):
T
tink2123 已提交
481
    """
T
tink2123 已提交
482
    jitter
T
tink2123 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496
    """
    w, h, _ = img.shape
    if h > 10 and w > 10:
        thres = min(w, h)
        s = int(random.random() * thres * 0.01)
        src_img = img.copy()
        for i in range(s):
            img[i:, i:, :] = src_img[:w - i, :h - i, :]
        return img
    else:
        return img


def add_gasuss_noise(image, mean=0, var=0.1):
497 498 499
    """
    Gasuss noise
    """
T
tink2123 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

    noise = np.random.normal(mean, var**0.5, image.shape)
    out = image + 0.5 * noise
    out = np.clip(out, 0, 255)
    out = np.uint8(out)
    return out


def get_crop(image):
    """
    random crop
    """
    h, w, _ = image.shape
    top_min = 1
    top_max = 8
    top_crop = int(random.randint(top_min, top_max))
516
    top_crop = min(top_crop, h - 1)
T
tink2123 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    crop_img = image.copy()
    ratio = random.randint(0, 1)
    if ratio:
        crop_img = crop_img[top_crop:h, :, :]
    else:
        crop_img = crop_img[0:h - top_crop, :, :]
    return crop_img


def rad(x):
    """
    rad
    """
    return x * np.pi / 180


def get_warpR(config):
    """
    get_warpR
    """
    anglex, angley, anglez, fov, w, h, r = \
        config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
    if w > 69 and w < 112:
        anglex = anglex * 1.5

    z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
    # Homogeneous coordinate transformation matrix
    rx = np.array([[1, 0, 0, 0],
                   [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
                       0,
                       -np.sin(rad(anglex)),
                       np.cos(rad(anglex)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
                   [0, 1, 0, 0], [
                       -np.sin(rad(angley)),
                       0,
                       np.cos(rad(angley)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
                   [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
    r = rx.dot(ry).dot(rz)
    # generate 4 points
    pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
    p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
    p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
    p3 = np.array([0, h, 0, 0], np.float32) - pcenter
    p4 = np.array([w, h, 0, 0], np.float32) - pcenter
    dst1 = r.dot(p1)
    dst2 = r.dot(p2)
    dst3 = r.dot(p3)
    dst4 = r.dot(p4)
572
    list_dst = np.array([dst1, dst2, dst3, dst4])
T
tink2123 已提交
573 574 575
    org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
    dst = np.zeros((4, 2), np.float32)
    # Project onto the image plane
576 577 578
    dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
    dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]

T
tink2123 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    warpR = cv2.getPerspectiveTransform(org, dst)

    dst1, dst2, dst3, dst4 = dst
    r1 = int(min(dst1[1], dst2[1]))
    r2 = int(max(dst3[1], dst4[1]))
    c1 = int(min(dst1[0], dst3[0]))
    c2 = int(max(dst2[0], dst4[0]))

    try:
        ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))

        dx = -c1
        dy = -r1
        T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
        ret = T1.dot(warpR)
    except:
        ratio = 1.0
        T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
        ret = T1
    return ret, (-r1, -c1), ratio, dst


def get_warpAffine(config):
    """
    get_warpAffine
    """
    anglez = config.anglez
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
    return rz