predictors.py 5.0 KB
Newer Older
W
weishengyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import cv2
import math
import paddle
W
weishengyu 已提交
18
import platform
W
weishengyu 已提交
19 20 21 22 23 24 25 26

from arch import style_text_rec
from utils.sys_funcs import check_gpu
from utils.logging import get_logger


class StyleTextRecPredictor(object):
    def __init__(self, config):
W
weishengyu 已提交
27
        self.logger = get_logger()
W
weishengyu 已提交
28 29 30 31
        algorithm = config['Predictor']['algorithm']
        assert algorithm in ["StyleTextRec"
                             ], "Generator {} not supported.".format(algorithm)
        use_gpu = config["Global"]['use_gpu']
W
weishengyu 已提交
32 33
        if use_gpu and paddle.is_compiled_with_cuda() and platform.system()=="Windows":
            self.logger.error("GPU mode on Windows is not supported.")
W
weishengyu 已提交
34
        check_gpu(use_gpu)
35
        paddle.set_device('gpu' if use_gpu else 'cpu')
W
weishengyu 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        self.generator = getattr(style_text_rec, algorithm)(config)
        self.height = config["Global"]["image_height"]
        self.width = config["Global"]["image_width"]
        self.scale = config["Predictor"]["scale"]
        self.mean = config["Predictor"]["mean"]
        self.std = config["Predictor"]["std"]
        self.expand_result = config["Predictor"]["expand_result"]

    def predict(self, style_input, text_input):
        style_input = self.rep_style_input(style_input, text_input)
        tensor_style_input = self.preprocess(style_input)
        tensor_text_input = self.preprocess(text_input)
        style_text_result = self.generator.forward(tensor_style_input,
                                                   tensor_text_input)
        fake_fusion = self.postprocess(style_text_result["fake_fusion"])
        fake_text = self.postprocess(style_text_result["fake_text"])
        fake_sk = self.postprocess(style_text_result["fake_sk"])
        fake_bg = self.postprocess(style_text_result["fake_bg"])
        bbox = self.get_text_boundary(fake_text)
        if bbox:
            left, right, top, bottom = bbox
            fake_fusion = fake_fusion[top:bottom, left:right, :]
            fake_text = fake_text[top:bottom, left:right, :]
            fake_sk = fake_sk[top:bottom, left:right, :]
            fake_bg = fake_bg[top:bottom, left:right, :]

        # fake_fusion = self.crop_by_text(img_fake_fusion, img_fake_text)
        return {
            "fake_fusion": fake_fusion,
            "fake_text": fake_text,
            "fake_sk": fake_sk,
            "fake_bg": fake_bg,
        }

    def preprocess(self, img):
        img = (img.astype('float32') * self.scale - self.mean) / self.std
        img_height, img_width, channel = img.shape
        assert channel == 3, "Please use an rgb image."
        ratio = img_width / float(img_height)
        if math.ceil(self.height * ratio) > self.width:
            resized_w = self.width
        else:
            resized_w = int(math.ceil(self.height * ratio))
        img = cv2.resize(img, (resized_w, self.height))

        new_img = np.zeros([self.height, self.width, 3]).astype('float32')
        new_img[:, 0:resized_w, :] = img
        img = new_img.transpose((2, 0, 1))
        img = img[np.newaxis, :, :, :]
        return paddle.to_tensor(img)

    def postprocess(self, tensor):
        img = tensor.numpy()[0]
        img = img.transpose((1, 2, 0))
        img = (img * self.std + self.mean) / self.scale
        img = np.maximum(img, 0.0)
        img = np.minimum(img, 255.0)
        img = img.astype('uint8')
        return img

    def rep_style_input(self, style_input, text_input):
        rep_num = int(1.2 * (text_input.shape[1] / text_input.shape[0]) /
                      (style_input.shape[1] / style_input.shape[0])) + 1
        style_input = np.tile(style_input, reps=[1, rep_num, 1])
        max_width = int(self.width / self.height * style_input.shape[0])
        style_input = style_input[:, :max_width, :]
        return style_input

    def get_text_boundary(self, text_img):
        img_height = text_img.shape[0]
        img_width = text_img.shape[1]
        bounder = 3
        text_canny_img = cv2.Canny(text_img, 10, 20)
        edge_num_h = text_canny_img.sum(axis=0)
        no_zero_list_h = np.where(edge_num_h > 0)[0]
        edge_num_w = text_canny_img.sum(axis=1)
        no_zero_list_w = np.where(edge_num_w > 0)[0]
        if len(no_zero_list_h) == 0 or len(no_zero_list_w) == 0:
            return None
        left = max(no_zero_list_h[0] - bounder, 0)
        right = min(no_zero_list_h[-1] + bounder, img_width)
        top = max(no_zero_list_w[0] - bounder, 0)
        bottom = min(no_zero_list_w[-1] + bounder, img_height)
        return [left, right, top, bottom]