train_infer_python.txt 1.7 KB
Newer Older
A
andyjpaddle 已提交
1 2 3 4 5 6 7 8
===========================train_params===========================
model_name:rec_mtb_nrtr
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
A
andyjpaddle 已提交
9
Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=64
A
andyjpaddle 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
A
andyjpaddle 已提交
29
Global.checkpoints:
A
andyjpaddle 已提交
30 31 32 33 34 35 36
norm_export:tools/export_model.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
A
andyjpaddle 已提交
37
train_model:./inference/rec_mtb_nrtr_train/best_accuracy
A
andyjpaddle 已提交
38 39 40 41 42
infer_export:tools/export_model.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/EN_symbol_dict.txt --rec_image_shape="1,32,100" --rec_algorithm="NRTR"
--use_gpu:True|False
--enable_mkldnn:True|False
T
Topdu 已提交
43
--cpu_threads:6
A
andyjpaddle 已提交
44 45
--rec_batch_num:1|6
--use_tensorrt:True|False
T
Topdu 已提交
46
--precision:fp32
A
andyjpaddle 已提交
47 48 49 50 51
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
52 53
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[1,32,100]}]