det_r18_vd_db_v1.1.yml 1.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Global:
  algorithm: DB
  use_gpu: true
  epoch_num: 1200
  log_smooth_window: 20
  print_batch_step: 2
  save_model_dir: ./output/det_r_18_vd_db/
  save_epoch_step: 200
  eval_batch_step: [3000, 2000]
  train_batch_size_per_card: 8
  test_batch_size_per_card: 1
  image_shape: [3, 640, 640]
  reader_yml: ./configs/det/det_db_icdar15_reader.yml
  pretrain_weights: ./pretrain_models/ResNet18_vd_pretrained/
  save_res_path: ./output/det_r18_vd_db/predicts_db.txt
  checkpoints:
  save_inference_dir:
18
  infer_img:
L
LDOUBLEV 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

Architecture:
  function: ppocr.modeling.architectures.det_model,DetModel

Backbone:
  function: ppocr.modeling.backbones.det_resnet_vd,ResNet
  layers: 18

Head:
  function: ppocr.modeling.heads.det_db_head,DBHead
  model_name: large
  k: 50
  inner_channels: 256
  out_channels: 2

Loss:
  function: ppocr.modeling.losses.det_db_loss,DBLoss
  balance_loss: true
  main_loss_type: DiceLoss
  alpha: 5
  beta: 10
  ohem_ratio: 3

Optimizer:
  function: ppocr.optimizer,AdamDecay
  base_lr: 0.001
  beta1: 0.9
  beta2: 0.999
M
MissPenguin 已提交
47 48 49 50
  decay:                                                                                                                         
    function: cosine_decay_warmup
    step_each_epoch: 32                                                                                                         
    total_epoch: 1200
L
LDOUBLEV 已提交
51 52 53 54

PostProcess:
  function: ppocr.postprocess.db_postprocess,DBPostProcess
  thresh: 0.3
55
  box_thresh: 0.5
L
LDOUBLEV 已提交
56
  max_candidates: 1000
57
  unclip_ratio: 1.6
L
LDOUBLEV 已提交
58