optimizer.py 7.3 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from paddle import optimizer as optim


class Momentum(object):
    """
    Simple Momentum optimizer with velocity state.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

Z
zhoujun 已提交
33 34 35 36 37 38
    def __init__(self,
                 learning_rate,
                 momentum,
                 weight_decay=None,
                 grad_clip=None,
                 **args):
W
WenmuZhou 已提交
39 40 41 42
        super(Momentum, self).__init__()
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.weight_decay = weight_decay
Z
zhoujun 已提交
43
        self.grad_clip = grad_clip
W
WenmuZhou 已提交
44

T
Topdu 已提交
45
    def __call__(self, model):
W
WenmuZhou 已提交
46 47 48
        opt = optim.Momentum(
            learning_rate=self.learning_rate,
            momentum=self.momentum,
Z
zhoujun 已提交
49 50
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
T
Topdu 已提交
51
            parameters=model.parameters())
W
WenmuZhou 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
        return opt


class Adam(object):
    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-08,
                 parameter_list=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None,
                 lazy_mode=False,
                 **kwargs):
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.parameter_list = parameter_list
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
        self.name = name
        self.lazy_mode = lazy_mode

T
Topdu 已提交
78
    def __call__(self, model):
W
WenmuZhou 已提交
79 80 81 82 83 84 85 86 87
        opt = optim.Adam(
            learning_rate=self.learning_rate,
            beta1=self.beta1,
            beta2=self.beta2,
            epsilon=self.epsilon,
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            name=self.name,
            lazy_mode=self.lazy_mode,
T
Topdu 已提交
88
            parameters=model.parameters())
W
WenmuZhou 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        return opt


class RMSProp(object):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        rho (float) - rho value in equation.
        epsilon (float) - avoid division by zero, default is 1e-6.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

    def __init__(self,
                 learning_rate,
Z
zhoujun 已提交
106
                 momentum=0.0,
W
WenmuZhou 已提交
107 108 109
                 rho=0.95,
                 epsilon=1e-6,
                 weight_decay=None,
Z
zhoujun 已提交
110
                 grad_clip=None,
W
WenmuZhou 已提交
111 112 113 114 115 116 117
                 **args):
        super(RMSProp, self).__init__()
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.rho = rho
        self.epsilon = epsilon
        self.weight_decay = weight_decay
Z
zhoujun 已提交
118
        self.grad_clip = grad_clip
W
WenmuZhou 已提交
119

T
Topdu 已提交
120
    def __call__(self, model):
W
WenmuZhou 已提交
121 122 123 124 125 126
        opt = optim.RMSProp(
            learning_rate=self.learning_rate,
            momentum=self.momentum,
            rho=self.rho,
            epsilon=self.epsilon,
            weight_decay=self.weight_decay,
Z
zhoujun 已提交
127
            grad_clip=self.grad_clip,
T
Topdu 已提交
128
            parameters=model.parameters())
W
WenmuZhou 已提交
129
        return opt
T
tink2123 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150


class Adadelta(object):
    def __init__(self,
                 learning_rate=0.001,
                 epsilon=1e-08,
                 rho=0.95,
                 parameter_list=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None,
                 **kwargs):
        self.learning_rate = learning_rate
        self.epsilon = epsilon
        self.rho = rho
        self.parameter_list = parameter_list
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
        self.name = name

T
Topdu 已提交
151
    def __call__(self, model):
T
tink2123 已提交
152 153 154 155 156 157 158
        opt = optim.Adadelta(
            learning_rate=self.learning_rate,
            epsilon=self.epsilon,
            rho=self.rho,
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            name=self.name,
T
Topdu 已提交
159
            parameters=model.parameters())
T
tink2123 已提交
160
        return opt
161 162 163 164 165 166 167


class AdamW(object):
    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
T
Topdu 已提交
168
                 epsilon=1e-8,
169
                 weight_decay=0.01,
T
Topdu 已提交
170
                 multi_precision=False,
171
                 grad_clip=None,
T
Topdu 已提交
172 173
                 no_weight_decay_name=None,
                 one_dim_param_no_weight_decay=False,
174 175
                 name=None,
                 lazy_mode=False,
T
Topdu 已提交
176 177
                 **args):
        super().__init__()
178 179 180 181
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
T
Topdu 已提交
182
        self.grad_clip = grad_clip
183 184 185 186
        self.weight_decay = 0.01 if weight_decay is None else weight_decay
        self.grad_clip = grad_clip
        self.name = name
        self.lazy_mode = lazy_mode
T
Topdu 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
        self.multi_precision = multi_precision
        self.no_weight_decay_name_list = no_weight_decay_name.split(
        ) if no_weight_decay_name else []
        self.one_dim_param_no_weight_decay = one_dim_param_no_weight_decay

    def __call__(self, model):
        parameters = model.parameters()

        self.no_weight_decay_param_name_list = [
            p.name for n, p in model.named_parameters() if any(nd in n for nd in self.no_weight_decay_name_list)
        ]

        if self.one_dim_param_no_weight_decay:
            self.no_weight_decay_param_name_list += [
                p.name  for n, p in model.named_parameters() if len(p.shape) == 1
            ]
        
204 205 206 207 208
        opt = optim.AdamW(
            learning_rate=self.learning_rate,
            beta1=self.beta1,
            beta2=self.beta2,
            epsilon=self.epsilon,
T
Topdu 已提交
209
            parameters=parameters,
210
            weight_decay=self.weight_decay,
T
Topdu 已提交
211
            multi_precision=self.multi_precision,
212 213 214
            grad_clip=self.grad_clip,
            name=self.name,
            lazy_mode=self.lazy_mode,
T
Topdu 已提交
215
            apply_decay_param_fun=self._apply_decay_param_fun)
216
        return opt
T
Topdu 已提交
217 218 219

    def _apply_decay_param_fun(self, name):
        return name not in self.no_weight_decay_param_name_list