web_service.py 6.3 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
bjjwwang 已提交
14
from paddle_serving_server.web_service import WebService, Op
L
LDOUBLEV 已提交
15 16 17

import logging
import numpy as np
T
tink2123 已提交
18
import copy
L
LDOUBLEV 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
import cv2
import base64
# from paddle_serving_app.reader import OCRReader
from ocr_reader import OCRReader, DetResizeForTest
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes

_LOGGER = logging.getLogger()


class DetOp(Op):
    def init_op(self):
        self.det_preprocess = Sequential([
            DetResizeForTest(), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
                (2, 0, 1))
        ])
        self.filter_func = FilterBoxes(10, 10)
        self.post_func = DBPostProcess({
            "thresh": 0.3,
T
tink2123 已提交
40
            "box_thresh": 0.6,
L
LDOUBLEV 已提交
41 42 43 44 45 46 47 48
            "max_candidates": 1000,
            "unclip_ratio": 1.5,
            "min_size": 3
        })

    def preprocess(self, input_dicts, data_id, log_id):
        (_, input_dict), = input_dicts.items()
        data = base64.b64decode(input_dict["image"].encode('utf8'))
T
add qps  
tink2123 已提交
49
        self.raw_im = data
L
LDOUBLEV 已提交
50 51 52 53
        data = np.fromstring(data, np.uint8)
        # Note: class variables(self.var) can only be used in process op mode
        im = cv2.imdecode(data, cv2.IMREAD_COLOR)
        self.ori_h, self.ori_w, _ = im.shape
T
add qps  
tink2123 已提交
54
        det_img = self.det_preprocess(im)
L
LDOUBLEV 已提交
55 56 57
        _, self.new_h, self.new_w = det_img.shape
        return {"x": det_img[np.newaxis, :].copy()}, False, None, ""

littletomatodonkey's avatar
littletomatodonkey 已提交
58
    def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
L
LDOUBLEV 已提交
59 60 61 62 63 64
        det_out = fetch_dict["save_infer_model/scale_0.tmp_1"]
        ratio_list = [
            float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
        ]
        dt_boxes_list = self.post_func(det_out, [ratio_list])
        dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
T
add qps  
tink2123 已提交
65
        out_dict = {"dt_boxes": dt_boxes, "image": self.raw_im}
L
LDOUBLEV 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79

        return out_dict, None, ""


class RecOp(Op):
    def init_op(self):
        self.ocr_reader = OCRReader(
            char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt")

        self.get_rotate_crop_image = GetRotateCropImage()
        self.sorted_boxes = SortedBoxes()

    def preprocess(self, input_dicts, data_id, log_id):
        (_, input_dict), = input_dicts.items()
T
add qps  
tink2123 已提交
80 81 82
        raw_im = input_dict["image"]
        data = np.frombuffer(raw_im, np.uint8)
        im = cv2.imdecode(data, cv2.IMREAD_COLOR)
T
tink2123 已提交
83 84 85 86
        self.dt_list = input_dict["dt_boxes"]
        self.dt_list = self.sorted_boxes(self.dt_list)
        # deepcopy to save origin dt_boxes
        dt_boxes = copy.deepcopy(self.dt_list)
L
LDOUBLEV 已提交
87 88 89
        feed_list = []
        img_list = []
        max_wh_ratio = 0
T
tink2123 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        ## Many mini-batchs, the type of feed_data is list.
        max_batch_size = 6  # len(dt_boxes)

        # If max_batch_size is 0, skipping predict stage
        if max_batch_size == 0:
            return {}, True, None, ""
        boxes_size = len(dt_boxes)
        batch_size = boxes_size // max_batch_size
        rem = boxes_size % max_batch_size
        for bt_idx in range(0, batch_size + 1):
            imgs = None
            boxes_num_in_one_batch = 0
            if bt_idx == batch_size:
                if rem == 0:
                    continue
                else:
                    boxes_num_in_one_batch = rem
            elif bt_idx < batch_size:
                boxes_num_in_one_batch = max_batch_size
            else:
                _LOGGER.error("batch_size error, bt_idx={}, batch_size={}".
                              format(bt_idx, batch_size))
                break

            start = bt_idx * max_batch_size
            end = start + boxes_num_in_one_batch
            img_list = []
            for box_idx in range(start, end):
                boximg = self.get_rotate_crop_image(im, dt_boxes[box_idx])
                img_list.append(boximg)
                h, w = boximg.shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            _, w, h = self.ocr_reader.resize_norm_img(img_list[0],
                                                      max_wh_ratio).shape

            imgs = np.zeros((boxes_num_in_one_batch, 3, w, h)).astype('float32')
            for id, img in enumerate(img_list):
                norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
                imgs[id] = norm_img
            feed = {"x": imgs.copy()}
            feed_list.append(feed)
        return feed_list, False, None, ""
T
add qps  
tink2123 已提交
133

littletomatodonkey's avatar
littletomatodonkey 已提交
134
    def postprocess(self, input_dicts, fetch_data, data_id, log_id):
T
tink2123 已提交
135 136
        rec_list = []
        dt_num = len(self.dt_list)
T
tink2123 已提交
137 138 139 140 141
        if isinstance(fetch_data, dict):
            if len(fetch_data) > 0:
                rec_batch_res = self.ocr_reader.postprocess(
                    fetch_data, with_score=True)
                for res in rec_batch_res:
T
tink2123 已提交
142
                    rec_list.append(res)
T
tink2123 已提交
143 144 145 146 147
        elif isinstance(fetch_data, list):
            for one_batch in fetch_data:
                one_batch_res = self.ocr_reader.postprocess(
                    one_batch, with_score=True)
                for res in one_batch_res:
T
tink2123 已提交
148
                    rec_list.append(res)
T
tink2123 已提交
149 150 151 152 153 154
        result_list = []
        for i in range(dt_num):
            text = rec_list[i]
            dt_box = self.dt_list[i]
            result_list.append([text, dt_box.tolist()])
        res = {"result": str(result_list)}
L
LDOUBLEV 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167
        return res, None, ""


class OcrService(WebService):
    def get_pipeline_response(self, read_op):
        det_op = DetOp(name="det", input_ops=[read_op])
        rec_op = RecOp(name="rec", input_ops=[det_op])
        return rec_op


uci_service = OcrService(name="ocr")
uci_service.prepare_pipeline_config("config.yml")
uci_service.run_service()