readme.md 12.2 KB
Newer Older
M
update  
MissPenguin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
- [Server-side C++ Inference](#server-side-c-inference)
  - [1. Prepare the Environment](#1-prepare-the-environment)
    - [Environment](#environment)
    - [1.1 Compile OpenCV](#11-compile-opencv)
    - [1.2 Compile or Download or the Paddle Inference Library](#12-compile-or-download-or-the-paddle-inference-library)
      - [1.2.1 Direct download and installation](#121-direct-download-and-installation)
      - [1.2.2 Compile the inference source code](#122-compile-the-inference-source-code)
  - [2. Compile and Run the Demo](#2-compile-and-run-the-demo)
    - [2.1 Export the inference model](#21-export-the-inference-model)
    - [2.2 Compile PaddleOCR C++ inference demo](#22-compile-paddleocr-c-inference-demo)
    - [Run the demo](#run-the-demo)
        - [1. det+cls+rec:](#1-detclsrec)
        - [2. det+rec:](#2-detrec)
        - [3. det](#3-det)
        - [4. cls+rec:](#4-clsrec)
        - [5. rec](#5-rec)
        - [6. cls](#6-cls)
文幕地方's avatar
文幕地方 已提交
18 19
  - [3. FAQ](#3-faq)

M
update  
MissPenguin 已提交
20
# Server-side C++ Inference
文幕地方's avatar
文幕地方 已提交
21

M
update  
MissPenguin 已提交
22 23 24
This chapter introduces the C++ deployment steps of the PaddleOCR model. The corresponding Python predictive deployment method refers to [document](../../doc/doc_ch/inference.md).
C++ is better than python in terms of performance. Therefore, in CPU and GPU deployment scenarios, C++ deployment is mostly used.
This section will introduce how to configure the C++ environment and deploy PaddleOCR in Linux (CPU\GPU) environment. For Windows deployment please refer to [Windows](./docs/windows_vs2019_build.md) compilation guidelines.
文幕地方's avatar
文幕地方 已提交
25

26

M
update  
MissPenguin 已提交
27
## 1. Prepare the Environment
littletomatodonkey's avatar
littletomatodonkey 已提交
28

M
update  
MissPenguin 已提交
29
### Environment
littletomatodonkey's avatar
littletomatodonkey 已提交
30

M
update  
MissPenguin 已提交
31 32
- Linux, docker is recommended.
- Windows.
33 34


M
update  
MissPenguin 已提交
35
### 1.1 Compile OpenCV
36

M
update  
MissPenguin 已提交
37
* First of all, you need to download the source code compiled package in the Linux environment from the OpenCV official website. Taking OpenCV 3.4.7 as an example, the download command is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
38

littletomatodonkey's avatar
littletomatodonkey 已提交
39
```bash
W
WenmuZhou 已提交
40
cd deploy/cpp_infer
littletomatodonkey's avatar
littletomatodonkey 已提交
41 42
wget https://paddleocr.bj.bcebos.com/libs/opencv/opencv-3.4.7.tar.gz
tar -xf opencv-3.4.7.tar.gz
littletomatodonkey's avatar
littletomatodonkey 已提交
43 44
```

M
update  
MissPenguin 已提交
45 46 47
Finally, you will see the folder of `opencv-3.4.7/` in the current directory.

* Compile OpenCV, the OpenCV source path (`root_path`) and installation path (`install_path`) should be set by yourself. Enter the OpenCV source code path and compile it in the following way.
littletomatodonkey's avatar
littletomatodonkey 已提交
48 49 50


```shell
M
update  
MissPenguin 已提交
51
root_path=your_opencv_root_path
littletomatodonkey's avatar
littletomatodonkey 已提交
52 53
install_path=${root_path}/opencv3

M
update  
MissPenguin 已提交
54 55 56
rm -rf build
mkdir build
cd build
littletomatodonkey's avatar
littletomatodonkey 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

cmake .. \
    -DCMAKE_INSTALL_PREFIX=${install_path} \
    -DCMAKE_BUILD_TYPE=Release \
    -DBUILD_SHARED_LIBS=OFF \
    -DWITH_IPP=OFF \
    -DBUILD_IPP_IW=OFF \
    -DWITH_LAPACK=OFF \
    -DWITH_EIGEN=OFF \
    -DCMAKE_INSTALL_LIBDIR=lib64 \
    -DWITH_ZLIB=ON \
    -DBUILD_ZLIB=ON \
    -DWITH_JPEG=ON \
    -DBUILD_JPEG=ON \
    -DWITH_PNG=ON \
    -DBUILD_PNG=ON \
    -DWITH_TIFF=ON \
    -DBUILD_TIFF=ON

make -j
make install
```

M
update  
MissPenguin 已提交
80
In the above commands, `root_path` is the downloaded OpenCV source code path, and `install_path` is the installation path of OpenCV. After `make install` is completed, the OpenCV header file and library file will be generated in this folder for later OCR source code compilation.
littletomatodonkey's avatar
littletomatodonkey 已提交
81

littletomatodonkey's avatar
littletomatodonkey 已提交
82 83


M
update  
MissPenguin 已提交
84
The final file structure under the OpenCV installation path is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
85 86 87 88 89 90 91 92 93 94

```
opencv3/
|-- bin
|-- include
|-- lib
|-- lib64
|-- share
```

M
update  
MissPenguin 已提交
95
### 1.2 Compile or Download or the Paddle Inference Library
96

M
update  
MissPenguin 已提交
97
* There are 2 ways to obtain the Paddle inference library, described in detail below.
littletomatodonkey's avatar
littletomatodonkey 已提交
98

M
update  
MissPenguin 已提交
99
#### 1.2.1 Direct download and installation
littletomatodonkey's avatar
littletomatodonkey 已提交
100

M
update  
MissPenguin 已提交
101
[Paddle inference library official website](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html#linux). You can review and select the appropriate version of the inference library on the official website.
L
LDOUBLEV 已提交
102

littletomatodonkey's avatar
littletomatodonkey 已提交
103

M
update  
MissPenguin 已提交
104
* After downloading, use the following command to extract files.
littletomatodonkey's avatar
littletomatodonkey 已提交
105 106 107 108 109

```
tar -xf paddle_inference.tgz
```

M
update  
MissPenguin 已提交
110 111 112 113 114
Finally you will see the the folder of `paddle_inference/` in the current path.

#### 1.2.2 Compile the inference source code
* If you want to get the latest Paddle inference library features, you can download the latest code from Paddle GitHub repository and compile the inference library from the source code. It is recommended to download the inference library with paddle version greater than or equal to 2.0.1.
* You can refer to [Paddle inference library] (https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html) to get the Paddle source code from GitHub, and then compile To generate the latest inference library. The method of using git to access the code is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
115

littletomatodonkey's avatar
littletomatodonkey 已提交
116 117 118

```shell
git clone https://github.com/PaddlePaddle/Paddle.git
L
LDOUBLEV 已提交
119
git checkout develop
littletomatodonkey's avatar
littletomatodonkey 已提交
120 121
```

M
update  
MissPenguin 已提交
122
* Enter the Paddle directory and run the following commands to compile the paddle inference library.
littletomatodonkey's avatar
littletomatodonkey 已提交
123 124 125 126 127 128 129 130 131

```shell
rm -rf build
mkdir build
cd build

cmake  .. \
    -DWITH_CONTRIB=OFF \
    -DWITH_MKL=ON \
littletomatodonkey's avatar
littletomatodonkey 已提交
132
    -DWITH_MKLDNN=ON  \
littletomatodonkey's avatar
littletomatodonkey 已提交
133 134 135 136 137
    -DWITH_TESTING=OFF \
    -DCMAKE_BUILD_TYPE=Release \
    -DWITH_INFERENCE_API_TEST=OFF \
    -DON_INFER=ON \
    -DWITH_PYTHON=ON
littletomatodonkey's avatar
littletomatodonkey 已提交
138
make -j
littletomatodonkey's avatar
littletomatodonkey 已提交
139 140 141
make inference_lib_dist
```

M
update  
MissPenguin 已提交
142
For more compilation parameter options, please refer to the [document](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#congyuanmabianyi).
littletomatodonkey's avatar
littletomatodonkey 已提交
143 144


M
update  
MissPenguin 已提交
145
* After the compilation process, you can see the following files in the folder of `build/paddle_inference_install_dir/`.
littletomatodonkey's avatar
littletomatodonkey 已提交
146 147

```
L
LDOUBLEV 已提交
148
build/paddle_inference_install_dir/
littletomatodonkey's avatar
littletomatodonkey 已提交
149 150 151 152 153 154
|-- CMakeCache.txt
|-- paddle
|-- third_party
|-- version.txt
```

M
update  
MissPenguin 已提交
155
`paddle` is the Paddle library required for C++ prediction later, and `version.txt` contains the version information of the current inference library.
littletomatodonkey's avatar
littletomatodonkey 已提交
156

littletomatodonkey's avatar
littletomatodonkey 已提交
157

M
update  
MissPenguin 已提交
158
## 2. Compile and Run the Demo
littletomatodonkey's avatar
littletomatodonkey 已提交
159

M
update  
MissPenguin 已提交
160
### 2.1 Export the inference model
161

M
update  
MissPenguin 已提交
162
* You can refer to [Model inference](../../doc/doc_ch/inference.md) and export the inference model. After the model is exported, assuming it is placed in the `inference` directory, the directory structure is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
163 164 165 166

```
inference/
|-- det_db
M
MissPenguin 已提交
167 168
|   |--inference.pdiparams
|   |--inference.pdmodel
littletomatodonkey's avatar
littletomatodonkey 已提交
169
|-- rec_rcnn
M
MissPenguin 已提交
170 171
|   |--inference.pdiparams
|   |--inference.pdmodel
172 173 174
|-- cls
|   |--inference.pdiparams
|   |--inference.pdmodel
littletomatodonkey's avatar
littletomatodonkey 已提交
175 176 177
```


M
update  
MissPenguin 已提交
178 179
### 2.2 Compile PaddleOCR C++ inference demo

littletomatodonkey's avatar
littletomatodonkey 已提交
180

M
update  
MissPenguin 已提交
181
* The compilation commands are as follows. The addresses of Paddle C++ inference library, opencv and other Dependencies need to be replaced with the actual addresses on your own machines.
littletomatodonkey's avatar
littletomatodonkey 已提交
182

M
MissPenguin 已提交
183
```shell
M
MissPenguin 已提交
184
sh tools/build.sh
littletomatodonkey's avatar
littletomatodonkey 已提交
185 186
```

M
update  
MissPenguin 已提交
187
Specifically, you should modify the paths in `tools/build.sh`. The related content is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
188 189

```shell
littletomatodonkey's avatar
littletomatodonkey 已提交
190 191 192
OPENCV_DIR=your_opencv_dir
LIB_DIR=your_paddle_inference_dir
CUDA_LIB_DIR=your_cuda_lib_dir
M
update  
MissPenguin 已提交
193
CUDNN_LIB_DIR=your_cudnn_lib_dir
littletomatodonkey's avatar
littletomatodonkey 已提交
194 195
```

M
update  
MissPenguin 已提交
196 197 198
`OPENCV_DIR` is the OpenCV installation path; `LIB_DIR` is the download (`paddle_inference` folder)
or the generated Paddle inference library path (`build/paddle_inference_install_dir` folder);
`CUDA_LIB_DIR` is the CUDA library file path, in docker; it is `/usr/local/cuda/lib64`; `CUDNN_LIB_DIR` is the cuDNN library file path, in docker it is `/usr/lib/x86_64-linux-gnu/`.
littletomatodonkey's avatar
littletomatodonkey 已提交
199

littletomatodonkey's avatar
littletomatodonkey 已提交
200

M
update  
MissPenguin 已提交
201
* After the compilation is completed, an executable file named `ppocr` will be generated in the `build` folder.
littletomatodonkey's avatar
littletomatodonkey 已提交
202

M
MissPenguin 已提交
203

M
update  
MissPenguin 已提交
204 205
### Run the demo
Execute the built executable file:
M
MissPenguin 已提交
206
```shell
207 208 209
./build/ppocr [--param1] [--param2] [...]
```

M
update  
MissPenguin 已提交
210 211 212
Specifically,

##### 1. det+cls+rec:
213 214 215 216 217 218 219 220 221 222 223
```shell
./build/ppocr --det_model_dir=inference/det_db \
    --rec_model_dir=inference/rec_rcnn \
    --cls_model_dir=inference/cls \
    --image_dir=../../doc/imgs/12.jpg \
    --use_angle_cls=true \
    --det=true \
    --rec=true \
    --cls=true \
```

M
update  
MissPenguin 已提交
224
##### 2. det+rec:
225 226 227 228 229 230 231 232 233 234
```shell
./build/ppocr --det_model_dir=inference/det_db \
    --rec_model_dir=inference/rec_rcnn \
    --image_dir=../../doc/imgs/12.jpg \
    --use_angle_cls=false \
    --det=true \
    --rec=true \
    --cls=false \
```

M
update  
MissPenguin 已提交
235
##### 3. det
236 237 238 239 240
```shell
./build/ppocr --det_model_dir=inference/det_db \
    --image_dir=../../doc/imgs/12.jpg \
    --det=true \
    --rec=false
241
```
M
MissPenguin 已提交
242

M
update  
MissPenguin 已提交
243
##### 4. cls+rec:
littletomatodonkey's avatar
littletomatodonkey 已提交
244
```shell
245 246 247 248 249 250 251
./build/ppocr --rec_model_dir=inference/rec_rcnn \
    --cls_model_dir=inference/cls \
    --image_dir=../../doc/imgs_words/ch/word_1.jpg \
    --use_angle_cls=true \
    --det=false \
    --rec=true \
    --cls=true \
Z
zhoujun 已提交
252
```
253

M
update  
MissPenguin 已提交
254
##### 5. rec
M
MissPenguin 已提交
255
```shell
256 257 258 259 260 261
./build/ppocr --rec_model_dir=inference/rec_rcnn \
    --image_dir=../../doc/imgs_words/ch/word_1.jpg \
    --use_angle_cls=false \
    --det=false \
    --rec=true \
    --cls=false \
Z
zhoujun 已提交
262
```
263

M
update  
MissPenguin 已提交
264
##### 6. cls
M
MissPenguin 已提交
265
```shell
266 267 268
./build/ppocr --cls_model_dir=inference/cls \
    --cls_model_dir=inference/cls \
    --image_dir=../../doc/imgs_words/ch/word_1.jpg \
M
MissPenguin 已提交
269
    --use_angle_cls=true \
270 271 272
    --det=false \
    --rec=false \
    --cls=true \
M
MissPenguin 已提交
273 274
```

M
update  
MissPenguin 已提交
275
More parameters are as follows,
M
MissPenguin 已提交
276

M
update  
MissPenguin 已提交
277
- Common parameters
M
MissPenguin 已提交
278

M
update  
MissPenguin 已提交
279 280 281 282 283 284 285 286
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|use_gpu|bool|false|Whether to use GPU|
|gpu_id|int|0|GPU id when use_gpu is true|
|gpu_mem|int|4000|GPU memory requested|
|cpu_math_library_num_threads|int|10|Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed|
|enable_mkldnn|bool|true|Whether to use mkdlnn library|
|output|str|./output|Path where visualization results are saved|
M
MissPenguin 已提交
287

288

M
update  
MissPenguin 已提交
289 290 291
- forward

|parameter|data type|default|meaning|
292 293 294 295 296 297
| :---: | :---: | :---: | :---: |
|det|bool|true|前向是否执行文字检测|
|rec|bool|true|前向是否执行文字识别|
|cls|bool|false|前向是否执行文字方向分类|


M
update  
MissPenguin 已提交
298
- Detection related parameters
M
MissPenguin 已提交
299

M
update  
MissPenguin 已提交
300 301 302 303 304 305 306 307 308
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|det_model_dir|string|-|Address of detection inference model|
|max_side_len|int|960|Limit the maximum image height and width to 960|
|det_db_thresh|float|0.3|Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result|
|det_db_box_thresh|float|0.5|DB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate|
|det_db_unclip_ratio|float|1.6|Indicates the compactness of the text box, the smaller the value, the closer the text box to the text|
|det_db_score_mode|string|slow| slow: use polygon box to calculate bbox score, fast: use rectangle box to calculate. Use rectangular box to calculate faster, and polygonal box more accurate for curved text area.|
|visualize|bool|true|Whether to visualize the results,when it is set as true, the prediction results will be saved in the folder specified by the `output` field on an image with the same name as the input image.|
M
MissPenguin 已提交
309

M
update  
MissPenguin 已提交
310
- Classifier related parameters
M
MissPenguin 已提交
311

M
update  
MissPenguin 已提交
312 313 314 315 316 317
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|use_angle_cls|bool|false|Whether to use the direction classifier|
|cls_model_dir|string|-|Address of direction classifier inference model|
|cls_thresh|float|0.9|Score threshold of the  direction classifier|
|cls_batch_num|int|1|batch size of classifier|
M
MissPenguin 已提交
318

M
update  
MissPenguin 已提交
319
- Recognition related parameters
M
MissPenguin 已提交
320

M
update  
MissPenguin 已提交
321 322 323 324 325
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|rec_model_dir|string|-|Address of recognition inference model|
|rec_char_dict_path|string|../../ppocr/utils/ppocr_keys_v1.txt|dictionary file|
|rec_batch_num|int|6|batch size of recognition|
A
andyjpaddle 已提交
326 327
|rec_img_h|int|32|image height of recognition|
|rec_img_w|int|320|image width of recognition|
M
MissPenguin 已提交
328

M
update  
MissPenguin 已提交
329
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `rec_char_dict_path` and `rec_model_dir`.
M
MissPenguin 已提交
330

Z
zhoujun 已提交
331

M
update  
MissPenguin 已提交
332
The detection results will be shown on the screen, which is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
333

334 335 336 337 338 339 340 341 342
```bash
predict img: ../../doc/imgs/12.jpg
../../doc/imgs/12.jpg
0       det boxes: [[79,553],[399,541],[400,573],[80,585]] rec text: 打浦路252935号 rec score: 0.933757
1       det boxes: [[31,509],[510,488],[511,529],[33,549]] rec text: 绿洲仕格维花园公寓 rec score: 0.951745
2       det boxes: [[181,456],[395,448],[396,480],[182,488]] rec text: 打浦路15号 rec score: 0.91956
3       det boxes: [[43,413],[480,391],[481,428],[45,450]] rec text: 上海斯格威铂尔多大酒店 rec score: 0.915914
The detection visualized image saved in ./output//12.jpg
```
littletomatodonkey's avatar
littletomatodonkey 已提交
343

M
update  
MissPenguin 已提交
344

文幕地方's avatar
文幕地方 已提交
345
## 3. FAQ
littletomatodonkey's avatar
littletomatodonkey 已提交
346

M
update  
MissPenguin 已提交
347
 1.  Encountered the error `unable to access 'https://github.com/LDOUBLEV/AutoLog.git/': gnutls_handshake() failed: The TLS connection was non-properly terminated.`, change the github address in `deploy/cpp_infer/external-cmake/auto-log.cmake` to the https://gitee.com/Double_V/AutoLog address.