det_r50_vd_db.yml 2.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
Global:
  use_gpu: false
  epoch_num: 5
  log_smooth_window: 20
  print_batch_step: 1
  save_model_dir: ./output/db_mv3/
  save_epoch_step: 1200
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 400]
  cal_metric_during_train: False
  pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
  checkpoints:
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_en/img_10.jpg
  save_res_path: ./output/det_db/predicts_db.txt

Architecture:
  model_type: det
  algorithm: DB
  Transform:
  Backbone:
    name: ResNet  #MobileNetV3
    layers: 50
  Neck:
    name: DBFPN
    out_channels: 256
  Head:
    name: DBHead
    k: 50

Loss:
  name: DBLoss
  balance_loss: true
  main_loss_type: DiceLoss
  alpha: 5 #5
  beta: 10 #10
  ohem_ratio: 3

Optimizer:
  name: Adam #Momentum
  #momentum: 0.9
  beta1: 0.9
  beta2: 0.999
  lr:
    learning_rate: 0.001
  regularizer:
    name: 'L2'
    factor: 0

PostProcess:
  name: DBPostProcess
  thresh: 0.3
  box_thresh: 0.6
  max_candidates: 1000
  unclip_ratio: 1.5

Metric:
  name: DetMetric
  main_indicator: hmean

Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/icdar2015/text_localization/
    label_file_list:
      - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
    ratio_list: [1.0]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - Resize:
          # size: [640, 640]
      - MakeBorderMap:
          shrink_ratio: 0.4
          thresh_min: 0.3
          thresh_max: 0.7
      - MakeShrinkMap:
          shrink_ratio: 0.4
          min_text_size: 8
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 1
    num_workers: 0
    use_shared_memory: False

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/icdar2015/text_localization/
    label_file_list:
      - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - DetResizeForTest:
          image_shape: [736, 1280]
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 1 # must be 1
    num_workers: 0
    use_shared_memory: False