main.cpp 7.8 KB
Newer Older
M
MissPenguin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <glog/logging.h>
#include <include/ocr_det.h>
#include <include/ocr_rec.h>
#include <sys/stat.h>

#include <gflags/gflags.h>

DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
DEFINE_int32(cpu_math_library_num_threads, 10, "Num of threads with CPU.");
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU.");

DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
DEFINE_bool(visualize, true, "Whether show the detection results.");

DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");

DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");

DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
DEFINE_bool(use_fp16, false, "Whether use fp16 when use tensorrt.");

using namespace std;
using namespace cv;
using namespace PaddleOCR;


static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}


cv::Mat GetRotateCropImage(const cv::Mat &srcimage,
                            std::vector<std::vector<int>> box) {
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}


int main(int argc, char **argv) {
  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);
  if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
     (FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
    std::cout << "Usage[default]: ./ocr_system --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
    std::cout << "Usage[use angle cls]: ./ocr_system --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--use_angle_cls=true "
                << "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
                << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
    return -1;
  }

  if (!PathExists(FLAGS_image_dir)) {
      std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
      exit(1);      
  }
  std::vector<cv::String> cv_all_img_names;
  cv::glob(FLAGS_image_dir, cv_all_img_names);
  std::cout << "total images num: " << cv_all_img_names.size() << endl;

  DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                 FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads, 
                 FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
                 FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                 FLAGS_use_polygon_score, FLAGS_visualize,
                 FLAGS_use_tensorrt, FLAGS_use_fp16);

  Classifier *cls = nullptr;
  if (FLAGS_use_angle_cls) {
    cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                         FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
                         FLAGS_use_mkldnn, FLAGS_cls_thresh,
                         FLAGS_use_tensorrt, FLAGS_use_fp16);
  }

  CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                     FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
                     FLAGS_use_mkldnn, FLAGS_char_list_file,
                     FLAGS_use_tensorrt, FLAGS_use_fp16);

  auto start = std::chrono::system_clock::now();

  for (int i = 0; i < cv_all_img_names.size(); ++i) {
    LOG(INFO) << "The predict img: " << cv_all_img_names[i];

    cv::Mat srcimg = cv::imread(FLAGS_image_dir, cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
      exit(1);
    }
    std::vector<std::vector<std::vector<int>>> boxes;

    det.Run(srcimg, boxes);
  
    cv::Mat crop_img;
    for (int j = 0; j < boxes.size(); j++) {
      crop_img = GetRotateCropImage(srcimg, boxes[j]);

      if (cls != nullptr) {
        crop_img = cls->Run(crop_img);
      }
      rec.Run(crop_img);
    }
      
    auto end = std::chrono::system_clock::now();
    auto duration =
        std::chrono::duration_cast<std::chrono::microseconds>(end - start);
    std::cout << "Cost  "
              << double(duration.count()) *
                     std::chrono::microseconds::period::num /
                     std::chrono::microseconds::period::den
              << "s" << std::endl;
  }

  return 0;
}