文本识别理论部分.ipynb 19.1 KB
Notebook
Newer Older
T
tink2123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "\n",
    "# 文本识别算法理论\n",
    "\n",
    "本章主要介绍文本识别算法的理论知识,包括背景介绍、算法分类和部分经典论文思路。\n",
    "\n",
    "通过本章的学习,你可以掌握:\n",
    "\n",
    "1. 文本识别的目标\n",
    "\n",
    "2. 文本识别算法的分类\n",
    "\n",
    "3. 各类算法的典型思想\n",
    "\n",
    "\n",
    "## 1 背景介绍\n",
    "\n",
25
    "文本识别是OCR(Optical Character Recognition)的一个子任务,其任务为识别一个固定区域的文本内容。在OCR的两阶段方法里,它接在文本检测后面,将图像信息转换为文字信息。\n",
T
tink2123 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    "\n",
    "具体地,模型输入一张定位好的文本行,由模型预测出图片中的文字内容和置信度,可视化结果如下图所示:\n",
    "\n",
    "<center><img src=https://ai-studio-static-online.cdn.bcebos.com/a7c3404f778b489db9c1f686c7d2ff4d63b67c429b454f98b91ade7b89f8e903 width=\"600\"></center>\n",
    "\n",
    "<center><img src=https://ai-studio-static-online.cdn.bcebos.com/e72b1d6f80c342ac951d092bc8c325149cebb3763ec849ec8a2f54e7c8ad60ca width=\"600\"></center>\n",
    "\n",
    "\n",
    "文本识别的应用场景很多,有文档识别、路标识别、车牌识别、工业编号识别等等,根据实际场景可以把文本识别任务分为两个大类:**规则文本识别**和**不规则文本识别**。\n",
    "\n",
    "* 规则文本识别:主要指印刷字体、扫描文本等,认为文本大致处在水平线位置\n",
    "\n",
    "* 不规则文本识别: 往往出现在自然场景中,且由于文本曲率、方向、变形等方面差异巨大,文字往往不在水平位置,存在弯曲、遮挡、模糊等问题。\n",
    "\n",
    "\n",
    "下图展示的是 IC15 和 IC13 的数据样式,它们分别代表了不规则文本和规则文本。可以看出不规则文本往往存在扭曲、模糊、字体差异大等问题,更贴近真实场景,也存在更大的挑战性。\n",
    "\n",
    "因此目前各大算法都试图在不规则数据集上获得更高的指标。\n",
    "\n",
    "<center><img src=https://ai-studio-static-online.cdn.bcebos.com/bae4fce1370b4751a3779542323d0765a02a44eace7b44d2a87a241c13c6f8cf width=\"400\">\n",
    "<br><center>IC15 图片样例(不规则文本)</center>\n",
    "<img src=https://ai-studio-static-online.cdn.bcebos.com/b55800d3276f4f5fad170ea1b567eb770177fce226f945fba5d3247a48c15c34 width=\"400\"></center>\n",
    "<br><center>IC13 图片样例(规则文本)</center>\n",
    "\n",
    "\n",
    "不同的识别算法在对比能力时,往往也在这两大类公开数据集上比较。对比多个维度上的效果,目前较为通用的英文评估集合分类如下:\n",
    "\n",
    "<center><img src=https://ai-studio-static-online.cdn.bcebos.com/4d0aada261064031a16816b39a37f2ff6af70dbb57004cb7a106ae6485f14684 width=\"600\"></center>\n",
    "\n",
    "## 2 文本识别算法分类\n",
    "\n",
    "在传统的文本识别方法中,任务分为3个步骤,即图像预处理、字符分割和字符识别。需要对特定场景进行建模,一旦场景变化就会失效。面对复杂的文字背景和场景变动,基于深度学习的方法具有更优的表现。\n",
    "\n",
    "多数现有的识别算法可用如下统一框架表示,算法流程被划分为4个阶段:\n",
    "\n",
    "![](https://ai-studio-static-online.cdn.bcebos.com/a2750f4170864f69a3af36fc13db7b606d851f2f467d43cea6fbf3521e65450f)\n",
    "\n",
    "\n",
    "我们整理了主流的算法类别和主要论文,参考下表:\n",
    "\n",
    "<center>\n",
    "  \n",
    "| 算法类别 | 主要思路        | 主要论文 |\n",
    "| -------- | --------------- | -------- |\n",
    "| 传统算法   | 滑动窗口、字符提取、动态规划    |   - |\n",
    "| ctc      | 基于ctc的方法,序列不对齐,更快速识别 | CRNN, Rosetta |\n",
    "| Attention    | 基于attention的方法,应用于非常规文本 | RARE, DAN, PREN |\n",
    "| Transformer   | 基于transformer的方法             | SRN, NRTR, Master, ABINet  |\n",
    "|  校正     |  校正模块学习文本边界并校正成水平方向       | RARE, ASTER, SAR     |   \n",
    "| 分割 | 基于分割的方法,提取字符位置再做分类 | Text Scanner, Mask TextSpotter |\n",
    "  \n",
    "</center>\n",
    "\n",
    "\n",
    "### 2.1 规则文本识别\n",
    "\n",
    "\n",
    "文本识别的主流算法有两种,分别是基于 CTC (Conectionist Temporal Classification) 的算法和 Sequence2Sequence 算法,区别主要在解码阶段。\n",
    "\n",
    "基于 CTC 的算法是将编码产生的序列接入 CTC 进行解码;基于 Sequence2Sequence 的方法则是把序列接入循环神经网络(Recurrent Neural Network, RNN)模块进行循环解码,两种方式都验证有效也是主流的两大做法。\n",
    "\n",
    "<center><img src=https://ai-studio-static-online.cdn.bcebos.com/f64eee66e4a6426f934c1befc3b138629324cf7360c74f72bd6cf3c0de9d49bd width=\"600\"></center>\n",
    "<br><center>左:基于CTC的方法,右:基于Sequece2Sequence的方法 </center>\n",
    "\n",
    "\n",
    "#### 2.1.1 基于CTC的算法\n",
    "\n",
    "基于 CTC 最典型的算法是CRNN (Convolutional Recurrent Neural Network)[1],它的特征提取部分使用主流的卷积结构,常用的有ResNet、MobileNet、VGG等。由于文本识别任务的特殊性,输入数据中存在大量的上下文信息,卷积神经网络的卷积核特性使其更关注于局部信息,缺乏长依赖的建模能力,因此仅使用卷积网络很难挖掘到文本之间的上下文联系。为了解决这一问题,CRNN文本识别算法引入了双向 LSTM(Long Short-Term Memory) 用来增强上下文建模,通过实验证明双向LSTM模块可以有效的提取出图片中的上下文信息。最终将输出的特征序列输入到CTC模块,直接解码序列结果。该结构被验证有效,并广泛应用在文本识别任务中。Rosetta[2]是FaceBook提出的识别网络,由全卷积模型和CTC组成。Gao Y[3]等人使用CNN卷积替代LSTM,参数更少,性能提升精度持平。\n",
    "\n",
    "<center><img src=https://ai-studio-static-online.cdn.bcebos.com/d3c96dd9e9794fddb12fa16f926abdd3485194f0a2b749e792e436037490899b width=\"600\"></center>\n",
    "<center> CRNN 结构图 </center>\n",
    "\n",
    "\n",
    "#### 2.1.2 Sequence2Sequence 算法\n",
    "\n",
    "Sequence2Sequence 算法是由编码器 Encoder 把所有的输入序列都编码成一个统一的语义向量,然后再由解码器Decoder解码。在解码器Decoder解码的过程中,不断地将前一个时刻的输出作为后一个时刻的输入,循环解码,直到输出停止符为止。一般编码器是一个RNN,对于每个输入的词,编码器输出向量和隐藏状态,并将隐藏状态用于下一个输入的单词,循环得到语义向量;解码器是另一个RNN,它接收编码器输出向量并输出一系列字以创建转换。受到 Sequence2Sequence 在翻译领域的启发, Shi[4]提出了一种基于注意的编解码框架来识别文本,通过这种方式,rnn能够从训练数据中学习隐藏在字符串中的字符级语言模型。\n",
    "\n",
    "<center><img src=https://ai-studio-static-online.cdn.bcebos.com/f575333696b7438d919975dc218e61ccda1305b638c5497f92b46a7ec3b85243 width=\"400\" hight=\"500\"></center>\n",
    "<center> Sequence2Sequence 结构图 </center>\n",
    "\n",
    "以上两个算法在规则文本上都有很不错的效果,但由于网络设计的局限性,这类方法很难解决弯曲和旋转的不规则文本识别任务。为了解决这类问题,部分算法研究人员在以上两类算法的基础上提出了一系列改进算法。\n",
    "\n",
    "### 2.2 不规则文本识别\n",
    "\n",
    "* 不规则文本识别算法可以被分为4大类:基于校正的方法;基于 Attention 的方法;基于分割的方法;基于 Transformer 的方法。\n",
    "\n",
    "#### 2.2.1 基于校正的方法\n",
    "\n",
    "基于校正的方法利用一些视觉变换模块,将非规则的文本尽量转换为规则文本,然后使用常规方法进行识别。\n",
    "\n",
    "RARE[4]模型首先提出了对不规则文本的校正方案,整个网络分为两个主要部分:一个空间变换网络STN(Spatial Transformer Network) 和一个基于Sequence2Squence的识别网络。其中STN就是校正模块,不规则文本图像进入STN,通过TPS(Thin-Plate-Spline)变换成一个水平方向的图像,该变换可以一定程度上校正弯曲、透射变换的文本,校正后送入序列识别网络进行解码。\n",
    "\n",
    "<center><img src=https://ai-studio-static-online.cdn.bcebos.com/66406f89507245e8a57969b9bed26bfe0227a8cf17a84873902dd4a464b97bb5 width=\"600\"></center>\n",
    "<center> RARE 结构图 </center>\n",
    "\n",
    "RARE论文指出,该方法在不规则文本数据集上有较大的优势,特别比较了CUTE80和SVTP这两个数据集,相较CRNN高出5个百分点以上,证明了校正模块的有效性。基于此[6]同样结合了空间变换网络(STN)和基于注意的序列识别网络的文本识别系统。\n",
    "\n",
    "基于校正的方法有较好的迁移性,除了RARE这类基于Attention的方法外,STAR-Net[5]将校正模块应用到基于CTC的算法上,相比传统CRNN也有很好的提升。\n",
    "\n",
    "#### 2.2.2 基于Attention的方法\n",
    "\n",
    "基于 Attention 的方法主要关注的是序列之间各部分的相关性,该方法最早在机器翻译领域提出,认为在文本翻译的过程中当前词的结果主要由某几个单词影响的,因此需要给有决定性的单词更大的权重。在文本识别领域也是如此,将编码后的序列解码时,每一步都选择恰当的context来生成下一个状态,这样有利于得到更准确的结果。\n",
    "\n",
    "R^2AM [7] 首次将 Attention 引入文本识别领域,该模型首先将输入图像通过递归卷积层提取编码后的图像特征,然后利用隐式学习到的字符级语言统计信息通过递归神经网络解码输出字符。在解码过程中引入了Attention 机制实现了软特征选择,以更好地利用图像特征,这一有选择性的处理方式更符合人类的直觉。\n",
    "\n",
    "<center><img src=https://ai-studio-static-online.cdn.bcebos.com/a64ef10d4082422c8ac81dcda4ab75bf1db285d6b5fd462a8f309240445654d5 width=\"600\"></center>\n",
    "<center> R^2AM 结构图 </center>\n",
    "\n",
    "后续有大量算法在Attention领域进行探索和更新,例如SAR[8]将1D attention拓展到2D attention上,校正模块提到的RARE也是基于Attention的方法。实验证明基于Attention的方法相比CTC的方法有很好的精度提升。\n",
    "\n",
    "<center><img src=https://ai-studio-static-online.cdn.bcebos.com/4e2507fb58d94ec7a9b4d17151a986c84c5053114e05440cb1e7df423d32cb02 width=\"600\"></center>\n",
    "\n",
    "\n",
    "#### 2.2.3 基于分割的方法\n",
    "\n",
    "基于分割的方法是将文本行的各字符作为独立个体,相比与对整个文本行做矫正后识别,识别分割出的单个字符更加容易。它试图从输入的文本图像中定位每个字符的位置,并应用字符分类器来获得这些识别结果,将复杂的全局问题简化成了局部问题解决,在不规则文本场景下有比较不错的效果。然而这种方法需要字符级别的标注,数据获取上存在一定的难度。Lyu[9]等人提出了一种用于单词识别的实例分词模型,该模型在其识别部分使用了基于 FCN(Fully Convolutional Network) 的方法。[10]从二维角度考虑文本识别问题,设计了一个字符注意FCN来解决文本识别问题,当文本弯曲或严重扭曲时,该方法对规则文本和非规则文本都具有较优的定位结果。\n",
    "\n",
    "<center><img src=https://ai-studio-static-online.cdn.bcebos.com/fd3e8ef0d6ce4249b01c072de31297ca5d02fc84649846388f890163b624ff10 width=\"800\"></center>\n",
    "<center> Mask TextSpotter 结构图 </center>\n",
    "\n",
    "\n",
    "\n",
    "#### 2.2.4 基于Transformer的方法\n",
    "\n",
    "随着 Transformer 的快速发展,分类和检测领域都验证了 Transformer 在视觉任务中的有效性。如规则文本识别部分所说,CNN在长依赖建模上存在局限性,Transformer 结构恰好解决了这一问题,它可以在特征提取器中关注全局信息,并且可以替换额外的上下文建模模块(LSTM)。\n",
    "\n",
    "一部分文本识别算法使用 Transformer 的 Encoder 结构和卷积共同提取序列特征,Encoder 由多个 MultiHeadAttentionLayer 和 Positionwise Feedforward Layer 堆叠而成的block组成。MulitHeadAttention 中的 self-attention 利用矩阵乘法模拟了RNN的时序计算,打破了RNN中时序长时依赖的障碍。也有一部分算法使用 Transformer 的 Decoder 模块解码,相比传统RNN可获得更强的语义信息,同时并行计算具有更高的效率。\n",
    "\n",
    "SRN[11] 算法将Transformer的Encoder模块接在ResNet50后,增强了2D视觉特征。并提出了一个并行注意力模块,将读取顺序用作查询,使得计算与时间无关,最终并行输出所有时间步长的对齐视觉特征。此外SRN还利用Transformer的Eecoder作为语义模块,将图片的视觉信息和语义信息做融合,在遮挡、模糊等不规则文本上有较大的收益。\n",
    "\n",
    "NRTR[12] 使用了完整的Transformer结构对输入图片进行编码和解码,只使用了简单的几个卷积层做高层特征提取,在文本识别上验证了Transformer结构的有效性。\n",
    "\n",
    "<center><img src=https://ai-studio-static-online.cdn.bcebos.com/e7859f4469a842f0bd450e7e793a679d6e828007544241d09785c9b4ea2424a2 width=\"800\"></center>\n",
    "<center> NRTR 结构图 </center>\n",
    "\n",
    "SRACN[13]使用Transformer的解码器替换LSTM,再一次验证了并行训练的高效性和精度优势。\n",
    "\n",
    "## 3 总结\n",
    "\n",
    "本节主要介绍了文本识别相关的理论知识和主流算法,包括基于CTC的方法、基于Sequence2Sequence的方法以及基于分割的方法,并分别列举了经典论文的思路和贡献。下一节将基于CRNN算法进行实践课程讲解,从组网到优化完成整个训练过程,\n",
    "\n",
    "## 4  参考文献\n",
    "\n",
    "\n",
    "[1]Shi, B., Bai, X., & Yao, C. (2016). An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE transactions on pattern analysis and machine intelligence, 39(11), 2298-2304.\n",
    "\n",
    "[2]Fedor Borisyuk, Albert Gordo, and Viswanath Sivakumar. Rosetta: Large scale system for text detection and recognition in images. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 71–79. ACM, 2018.\n",
    "\n",
    "[3]Gao, Y., Chen, Y., Wang, J., & Lu, H. (2017). Reading scene text with attention convolutional sequence modeling. arXiv preprint arXiv:1709.04303.\n",
    "\n",
    "[4]Shi, B., Wang, X., Lyu, P., Yao, C., & Bai, X. (2016). Robust scene text recognition with automatic rectification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4168-4176).\n",
    "\n",
    "[5] Star-Net  Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spa- tial transformer networks. In Advances in neural information processing systems, pages 2017–2025, 2015.\n",
    "\n",
    "[6]Baoguang Shi, Mingkun Yang, XingGang Wang, Pengyuan Lyu, Xiang Bai, and Cong Yao. Aster: An attentional scene text recognizer with flexible rectification. IEEE transactions on pattern analysis and machine intelligence, 31(11):855–868, 2018.\n",
    "\n",
    "[7] Lee C Y ,  Osindero S . Recursive Recurrent Nets with Attention Modeling for OCR in the Wild[C]// IEEE Conference on Computer Vision & Pattern Recognition. IEEE, 2016.\n",
    "\n",
    "[8]Li, H., Wang, P., Shen, C., & Zhang, G. (2019, July). Show, attend and read: A simple and strong baseline for irregular text recognition. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 8610-8617).\n",
    "\n",
    "[9]P. Lyu, C. Yao, W. Wu, S. Yan, and X. Bai. Multi-oriented scene text detection via corner localization and region segmentation. In Proc. CVPR, pages 7553–7563, 2018.\n",
    "\n",
    "[10] Liao, M., Zhang, J., Wan, Z., Xie, F., Liang, J., Lyu, P., ... & Bai, X. (2019, July). Scene text recognition from two-dimensional perspective. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 8714-8721).\n",
    "\n",
    "[11] Yu, D., Li, X., Zhang, C., Liu, T., Han, J., Liu, J., & Ding, E. (2020). Towards accurate scene text recognition with semantic reasoning networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12113-12122).\n",
    "\n",
    "[12] Sheng, F., Chen, Z., & Xu, B. (2019, September). NRTR: A no-recurrence sequence-to-sequence model for scene text recognition. In 2019 International Conference on Document Analysis and Recognition (ICDAR) (pp. 781-786). IEEE.\n",
    "\n",
    "[13]Yang, L., Wang, P., Li, H., Li, Z., & Zhang, Y. (2020). A holistic representation guided attention network for scene text recognition. Neurocomputing, 414, 67-75.\n",
    "\n",
    "[14]Wang, T., Zhu, Y., Jin, L., Luo, C., Chen, X., Wu, Y., ... & Cai, M. (2020, April). Decoupled attention network for text recognition. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 07, pp. 12216-12224).\n",
    "\n",
    "[15] Wang, Y., Xie, H., Fang, S., Wang, J., Zhu, S., & Zhang, Y. (2021). From two to one: A new scene text recognizer with visual language modeling network. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 14194-14203).\n",
    "\n",
    "[16] Fang, S., Xie, H., Wang, Y., Mao, Z., & Zhang, Y. (2021). Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7098-7107).\n",
    "\n",
    "[17] Yan, R., Peng, L., Xiao, S., & Yao, G. (2021). Primitive Representation Learning for Scene Text Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 284-293)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "py35-paddle1.2.0"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}