clas_rpc_server.py 4.9 KB
Newer Older
W
wangjiawei04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle_serving_client import Client
from paddle_serving_app.reader import OCRReader
import cv2
import sys
import numpy as np
import os
import time
import re
import base64
from tools.infer.predict_cls import TextClassifier
import tools.infer.utility as utility

global_args = utility.parse_args()
if global_args.use_gpu:
    from paddle_serving_server_gpu.web_service import WebService
else:
    from paddle_serving_server.web_service import WebService


class TextClassifierHelper(TextClassifier):
    def __init__(self, args):
        self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
        self.cls_batch_num = args.rec_batch_num
        self.label_list = args.label_list
        self.cls_thresh = args.cls_thresh
        self.fetch = [
            "save_infer_model/scale_0.tmp_0", "save_infer_model/scale_1.tmp_0"
        ]

    def preprocess(self, img_list):
        args = {}
        img_num = len(img_list)
        args["img_list"] = img_list
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        # Sorting can speed up the cls process
        indices = np.argsort(np.array(width_list))
        args["indices"] = indices
        cls_res = [['', 0.0]] * img_num
        batch_num = self.cls_batch_num
        predict_time = 0
        beg_img_no, end_img_no = 0, img_num
        norm_img_batch = []
        max_wh_ratio = 0
        for ino in range(beg_img_no, end_img_no):
            h, w = img_list[indices[ino]].shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
        for ino in range(beg_img_no, end_img_no):
            norm_img = self.resize_norm_img(img_list[indices[ino]])
            norm_img = norm_img[np.newaxis, :]
            norm_img_batch.append(norm_img)
        norm_img_batch = np.concatenate(norm_img_batch)
        if img_num > 1:
            feed = [{
                "image": norm_img_batch[x]
            } for x in range(norm_img_batch.shape[0])]
        else:
            feed = {"image": norm_img_batch[0]}
        return feed, self.fetch, args

    def postprocess(self, outputs, args):
        prob_out = outputs[0]
        label_out = outputs[1]
        indices = args["indices"]
        cls_res = [['', 0.0]] * len(label_out)
        if len(label_out.shape) != 1:
            prob_out, label_out = label_out, prob_out
        for rno in range(len(label_out)):
            label_idx = label_out[rno]
            score = prob_out[rno][label_idx]
            label = self.label_list[label_idx]
            cls_res[indices[rno]] = [label, score]
            if '180' in label and score > self.cls_thresh:
                img_list[indices[rno]] = cv2.rotate(img_list[indices[rno]], 1)
        return args["img_list"], cls_res


class OCRService(WebService):
    def init_rec(self):
        self.ocr_reader = OCRReader()
        self.text_classifier = TextClassifierHelper(global_args)

    def preprocess(self, feed=[], fetch=[]):
        # TODO: to handle batch rec images
        img_list = []
        for feed_data in feed:
            data = base64.b64decode(feed_data["image"].encode('utf8'))
            data = np.fromstring(data, np.uint8)
            im = cv2.imdecode(data, cv2.IMREAD_COLOR)
            img_list.append(im)
        feed, fetch, self.tmp_args = self.text_classifier.preprocess(img_list)
        return feed, fetch

    def postprocess(self, feed={}, fetch=[], fetch_map=None):
        outputs = [fetch_map[x] for x in self.text_classifier.fetch]
        for x in fetch_map.keys():
            if ".lod" in x:
                self.tmp_args[x] = fetch_map[x]
        _, rec_res = self.text_classifier.postprocess(outputs, self.tmp_args)
        res = {
            "direction": [x[0] for x in rec_res],
            "score": [str(x[1]) for x in rec_res]
        }
        return res


if __name__ == "__main__":
    ocr_service = OCRService(name="ocr")
    ocr_service.load_model_config(global_args.cls_model_dir)
    ocr_service.init_rec()
    if global_args.use_gpu:
        ocr_service.prepare_server(
            workdir="workdir", port=9292, device="gpu", gpuid=0)
    else:
        ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
    ocr_service.run_rpc_service()
    ocr_service.run_web_service()